A Study on Pell and Pell-Lucas Numbers

M.Narayan Murty ${ }^{1}$ and Binayak Padhy ${ }^{2}$
${ }^{1}$ (Retired reader in Physics, H.No.269,Victor Colony, Near Dolo Tank, Paralahemundi-761200, Odisha)
${ }^{2}$ (Department of Physics, Khallikote Unitary University, Berhampur-760001, Odisha)

Abstract

In this paper, we have presented few properties of Pell and Pell-Lucas numbers. Then the matrices related to these numbers are given in this paper. Next some identities satisfied by these numbers with proofs are discussed in this paper.

Keywords: Recurrence relation, Pell numbers, Pell-Lucas numbers, Binet formula.

I. Introduction

The Pell numbers are named after English mathematician John Pell (1611-1685) and the Pell-Lucas numbers are named after the mathematician Edouard Lucas (1842-1891). The details about Pell and Pell-Lucas numbers can be found in [1, 2, 3]. In [3, 4] authors showed that the Pell numbers can be represented in matrices. The identities satisfied by Pell and Pell-Lucas numbers are stated in [5]. Both the Pell numbers and Pell-Lucas numbers can be calculated by recurrence relations.

The sequence of Pell numbers $\left\{P_{n}\right\}$ is defined by recurrence relation

$$
\begin{equation*}
P_{n}=2 P_{n-1}+P_{n-2} \text { for } n \geq 2 \text { with } P_{0}=0 \text { and } P_{1}=1 \tag{1}
\end{equation*}
$$

Where P_{n} denotes nth Pell number. The sequence of Pell numbers starts with 0 and 1 and then each number is the sum of twice its previous number and the number before its previous number.
The sequence of Pell-Lucas numbers $\left\{Q_{n}\right\}$ is defined by recurrence relation

$$
\begin{equation*}
Q_{n}=2 Q_{n-1}+Q_{n-2} \text { for } n \geq 2 \text { with } Q_{0}=2 \text { and } Q_{1}=2 \tag{2}
\end{equation*}
$$

Where Q_{n} denotes $n t h$ Pell-Lucas number. In the sequence of Pell-Lucas numbers each of the first two numbers is 2 and then each number is the sum of twice its previous number and the number before its previous number.

The first few Pell and Pell-Lucas numbers calculated from (1) and (2) are given in the following Table no.1.
Table no.1: First few Pell and Pell-Lucas numbers

n	0	1	2	3	4	5	6	7	8	9	10
P_{n}	0	1	2	5	12	29	70	169	408	985	2378
Q_{n}	2	2	6	14	34	82	198	478	1154	2786	6726

The rest of the paper is organized as follows. The properties of Pell and Pell-Lucas numbers are mentioned in Section-II. Matrix representations of Pell and Pell-Lucas numbers are given in Section-III. The identities satisfied by Pell and Pell-Lucas numbers are stated in Section-IV. Finally conclusion is given in Section-V.

II. Properties of Pell and Pell-Lucas numbers

1. The Pell numbers $\left\{P_{n}\right\}$ are either even or odd but Pell-Lucas numbers $\left\{Q_{n}\right\}$ are all even.
2. Binet formula:

The Binet formulas satisfied by Pell and Pell-Lucas numbers are given by

$$
\begin{align*}
P_{n} & =\frac{a^{n}-b^{n}}{a-b} \tag{3}\\
Q_{n} & =a^{n}+b^{n} \tag{4}
\end{align*}
$$

Where a and b are the roots of quadratic equation $x^{2}-2 x-1=0$. Solving this equation, we get

$$
\begin{equation*}
a=1+\sqrt{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
b=1-\sqrt{2} \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
& a+b=2 \tag{7}\\
& a-b=2 \sqrt{2} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
a b=-1 \tag{9}
\end{equation*}
$$

3. Let α and β are the solutions of equation

$$
\begin{equation*}
x^{2}-2 y^{2}= \pm 1 \tag{10}
\end{equation*}
$$

The sets of values of α and β satisfying (10) are given by
$(\alpha, \beta) \equiv(1,1),(3,2),(7,5),(17,12),(41,29),(99,70),(239,169),(577,408) \ldots \ldots$ etc.
The ratio α / β is approximately equal to $\sqrt{2} \approx 1.414$. Larger are the values of α and β, the more closer is the value of α / β to $\sqrt{2}$. For example, $\frac{41}{29} \approx 1.413793$ and $\frac{239}{169} \approx 1.414201$. The sequence of the ratio α / β closer to $\sqrt{2}$ is

$$
\begin{equation*}
\frac{\alpha}{\beta} \approx \frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \frac{577}{408}, \ldots \ldots . \tag{11}
\end{equation*}
$$

In the above sequence (11), the denominator of each fraction is a Pell number and the numerator is the sum of a Pell number and its predecessor in Pell sequence. Hence in general, we can write

$$
\begin{equation*}
\sqrt{2} \approx \frac{P_{n-1}+P_{n}}{P_{n}} \tag{12}
\end{equation*}
$$

4. Pythagorean triples:

If $A, B \& C$ are the integer sides of a right angled triangle satisfying the Pythagoras theorem $A^{2}+B^{2}=$ C^{2}, then the integers (A, B, C) are known as Pythagorean triples. These triples can be formed by Pell numbers. The Pythagorean triples has the form

$$
\begin{equation*}
(A, B, C) \equiv\left(2 P_{n} P_{n+1}, P_{n+1}^{2}-P_{n}^{2}, P_{2 n+1}\right) \tag{13}
\end{equation*}
$$

For example, if $n=2, A=2 P_{2} P_{3}=2 \times 2 \times 5=20, B=P_{3}^{2}-P_{2}^{2}=5^{2}-2^{2}=21$ and $C=P_{5}=$ 29. That is, the Pythagorean triple for $n=2$ is $(20,21,29)$.

The sequence of Pythagorean triples obtained by putting $n=1,2,3, \ldots$. etc. in (13) is given by

$$
(4,3,5),(20,21,29),(120,119,169),(696,697,985), \ldots e t c .
$$

5. Pell Primes:

A Pell number which is a prime number is called Pell Prime. The first few Pell Primes are

$$
2,5,29,5741,33461, \ldots \ldots .
$$

The indices of the Pell Primes in the sequence of Pell numbers respectively are

$$
2,3,5,11,13, \ldots \ldots .
$$

That is, $P_{2}=2, P_{3}=5, P_{5}=29, P_{11}=5741, \ldots \ldots$. etc. The indices of Pell Primes are also prime numbers.
6. Pell-Lucas Primes:

The number $\frac{Q_{n}}{2}$ is called Pell-Lucas Prime. The Pell-Lucas Primes are

$$
3,7,17,41,239,577, \ldots \ldots . \text { etc. }
$$

The indices of the above Pell-Lucas numbers in Pell-Lucas sequence are

$$
2,3,4,5,7,8 \text {,.........etc. }
$$

That is, $\frac{Q_{2}}{2}=3, \frac{Q_{3}}{2}=7, \frac{Q_{4}}{2}=17, \ldots \ldots$ etc.
7. The relation between Pell and Pell-Lucas numbers is given by

$$
\begin{equation*}
Q_{n}=\frac{P_{2 n}}{P_{n}} \tag{14}
\end{equation*}
$$

Proof: Using the Binet formulas (3) and (4) we get

$$
\begin{aligned}
P_{n} Q_{n} & =\left(\frac{a^{n}-b^{n}}{a-b}\right)\left(a^{n}+b^{n}\right) \\
& =\frac{a^{2 n}-b^{2 n}}{a-b} \\
& =P_{2 n}[\mathrm{By}(3)] \\
\Rightarrow Q_{n} & =\frac{P_{2 n}}{P_{n}}
\end{aligned}
$$

Thus (14) is proved.
For example, $Q_{3}=\frac{P_{6}}{P_{3}}=\frac{70}{5}=14$.
8. Simpson formula:

The Pell numbers satisfy Simpson's formula given by

$$
\begin{equation*}
P_{n+1} P_{n-1}-P_{n}^{2}=(-1)^{n} \tag{15}
\end{equation*}
$$

Proof: Using Binet formula (3), we get

$$
\begin{aligned}
P_{n+1} P_{n-1}-P_{n}^{2} & =\frac{\left(a^{n+1}-b^{n+1}\right)\left(a^{n-1}-b^{n-1}\right)}{(a-b)^{2}}-\frac{\left(a^{n}-b^{n}\right)^{2}}{(a-b)^{2}} \\
& =\frac{\left(a^{2 n}-a^{n+1} b^{n-1}-b^{n+1} a^{n-1}+b^{2 n}\right)-\left(a^{2 n}+b^{2 n}-2 a^{n} b^{n}\right)}{(a-b)^{2}} \\
& =\frac{-a^{n-1} b^{n-1}\left(a^{2}+b^{2}-2 a b\right)}{(a-b)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=-(a b)^{n-1}=-(-1)^{n-1} \quad[\text { By }(9)] \\
& \Rightarrow P_{n+1} P_{n-1}-P_{n}^{2}=(-1)^{n}
\end{aligned}
$$

Thus Simpson formula (15) is proved.
9. As proved in [6] the sum of Pell numbers up to $(4 n+1)$ is a perfect square as given below.

$$
\begin{equation*}
\sum_{i=0}^{4 n+1} P_{i}=\left(P_{2 n}+P_{2 n+1}\right)^{2} \tag{16}
\end{equation*}
$$

For example if $n=1$, LHS $=\sum_{i=0}^{5} P_{i}=P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=0+1+2+5+12+29=$ 49 and RHS $=\left(P_{2}+P_{3}\right)^{2}=(2+5)^{2}=49$. Hence the above relation (16) is verified.

III. Matrix representation of Pell and Pell-Lucas numbers

In this section some matrices are represented in terms of Pell and Pell-Lucas numbers.

1. Consider a 2×2 matrix R given by

$$
R=\left(\begin{array}{ll}
2 & 1 \tag{17}\\
1 & 0
\end{array}\right)
$$

Writing the matrix R in terms of Pell numbers, we have

$$
R=\left(\begin{array}{ll}
P_{2} & P_{1} \tag{18}\\
P_{1} & P_{0}
\end{array}\right)
$$

Now let us find out the matrices R^{2} and R^{3}.

$$
\begin{align*}
& R^{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) \quad[\mathrm{By}(17)] \tag{19}\\
& R^{3}=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
12 & 5 \\
5 & 2
\end{array}\right) \quad[\text { Вy }(17) \&(19)] \tag{20}
\end{align*}
$$

In terms of Pell numbers the above matrices (19) and (20) can be written as

$$
\begin{align*}
R^{2} & =\left(\begin{array}{ll}
P_{3} & P_{2} \\
P_{2} & P_{1}
\end{array}\right) \tag{21}\\
R^{3} & =\left(\begin{array}{ll}
P_{4} & P_{3} \\
P_{3} & P_{2}
\end{array}\right) \tag{22}
\end{align*}
$$

Considering (17), (21) and (22) one can write the nth power of the matrix R in general as

$$
\begin{align*}
R^{n}= & \left(\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right) \tag{23}\\
& \text { for } n=1,2,3, \ldots . \text { etc. }
\end{align*}
$$

2. Consider a 2×2 matrix E given by

$$
E=\left(\begin{array}{ll}
3 & 1 \tag{24}\\
1 & 1
\end{array}\right)
$$

The Pell numbers for even index n are expressed in terms of the matrix E by the following relation.

$$
\left[P_{n}\right]=\frac{1}{2^{n / 2}}\left[\begin{array}{ll}
1 & 0
\end{array}\right] E^{n}\left[\begin{array}{l}
0 \tag{25}\\
1
\end{array}\right] \quad \text { if } n \text { is even }
$$

Example: The above relation can be verified taking an example with $n=4$ (even). Now let us find out the value of E^{4}.

$$
\begin{align*}
E^{2} & =\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right) \quad[\text { By (24)] } \\
& =\left(\begin{array}{cc}
10 & 4 \\
4 & 2
\end{array}\right)=2\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) \tag{26}\\
E^{4} & =4\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) \quad[\mathrm{By}(26)] \\
& =4\left(\begin{array}{cc}
29 & 12 \\
12 & 5
\end{array}\right) \tag{27}
\end{align*}
$$

For $n=4$, (25) can be written as

$$
\begin{gathered}
{\left[P_{4}\right]=\frac{1}{2^{2}}\left[\begin{array}{ll}
1 & 0
\end{array}\right] E^{4}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=} \\
=\frac{1}{4}\left[\begin{array}{ll}
1 & 0
\end{array}\right] 4\left[\begin{array}{cc}
29 & 12 \\
12 & 5
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right][\operatorname{Using}(27)] \\
\\
=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
12 \\
5
\end{array}\right]=[12]
\end{gathered}
$$

That is, $P_{4}=12$, which is true. Hence the relation (25) is verified.
3. The $4^{\text {th }}$ power of matrix E in (27) can be written in terms of Pell numbers as

$$
E^{4}=2^{2}\left(\begin{array}{cc}
29 & 12 \\
12 & 5
\end{array}\right)=2^{2}\left(\begin{array}{ll}
P_{5} & P_{4} \\
P_{4} & P_{3}
\end{array}\right)
$$

In general the above relation can be written as

$$
E^{n}=2^{n / 2}\left(\begin{array}{cc}
P_{n+1} & P_{n} \tag{28}\\
P_{n} & P_{n-1}
\end{array}\right) \quad \text { if } n \text { is even }
$$

Where the matrix E is given by (24).
4. The matrix E given by (24) is an invertible matrix since $\operatorname{det} E \neq 0$.

We have

$$
E^{2}=\left(\begin{array}{cc}
10 & 4 \\
4 & 2
\end{array}\right) \quad[\text { By (26) }]
$$

Then,

$$
\operatorname{det} E^{2}=\left|\begin{array}{cc}
10 & 4 \tag{29}\\
4 & 2
\end{array}\right|=4
$$

Now consider a matrix B, whose elements are cofactors of E^{2}. Hence

$$
B=\left(\begin{array}{cc}
2 & -4 \\
-4 & 10
\end{array}\right)
$$

The transpose of above matrix B is given by

$$
B^{T}=\left(\begin{array}{cc}
2 & -4 \tag{30}\\
-4 & 10
\end{array}\right)
$$

The matrix B is a symmetric matrix as $B=B^{T}$. Now E^{-2} can be calculated using the relation

$$
\begin{align*}
E^{-2} & =\frac{1}{\operatorname{det} E^{2}} B^{T} \\
& =\frac{1}{4}\left(\begin{array}{cc}
2 & -4 \\
-4 & 10
\end{array}\right) \quad[\text { By (29) \& (30)] } \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
P_{1} & -P_{2} \\
-P_{2} & P_{3}
\end{array}\right) \tag{31}
\end{align*}
$$

In general the above expression (31) can be written as

$$
E^{-n}=\frac{1}{2^{n / 2}}\left(\begin{array}{ll}
P_{n-1} & -P_{n} \tag{32}\\
-P_{n} & P_{n+1}
\end{array}\right) \quad \text { if } n \text { is even }
$$

5. Consider a 2×2 matrix F given by

$$
F=2 E=\left(\begin{array}{ll}
6 & 2 \tag{33}\\
2 & 2
\end{array}\right) \quad[\text { By }(24)]
$$

Now let us find out the matrix F^{2}.

$$
F^{2}=\left(\begin{array}{ll}
6 & 2 \tag{34}\\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
6 & 2 \\
2 & 2
\end{array}\right)=\left(\begin{array}{cc}
40 & 16 \\
16 & 8
\end{array}\right)=8\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)
$$

In terms of Pell numbers the above expression can be written as

$$
F^{2}=2^{3}\left(\begin{array}{ll}
P_{3} & P_{2} \tag{35}\\
P_{2} & P_{1}
\end{array}\right)
$$

Now let us calculate the matrix F^{4}.
$F^{4}=F^{2} \times F^{2}=64\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right)=2^{6}\left(\begin{array}{cc}29 & 12 \\ 12 & 5\end{array}\right)[\mathrm{By} \mathrm{(34)}]$
In terms of Pell numbers the above expression can be written as

$$
F^{4}=2^{6}\left(\begin{array}{ll}
P_{5} & P_{4} \tag{36}\\
P_{4} & P_{3}
\end{array}\right)
$$

In general noting the above relations (35) and (36) the nth power of the matrix F can be written as

$$
F^{n}=2^{3 n / 2}\left(\begin{array}{cc}
P_{n+1} & P_{n} \tag{37}\\
P_{n} & P_{n-1}
\end{array}\right) \quad \text { if } n \text { is even }
$$

6. Let us now calculate the matrix F^{3} in terms of Pell-Lucas numbers.
$F^{3}=F \times F^{2}=\left(\begin{array}{ll}6 & 2 \\ 2 & 2\end{array}\right) 8\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right)=8\left(\begin{array}{cc}34 & 14 \\ 14 & 6\end{array}\right)$ [By (33) \& 34)]
The above relation in terms of Pell-Lucas numbers can be written as

$$
F^{3}=2^{3}\left(\begin{array}{ll}
Q_{4} & Q_{3} \\
Q_{3} & Q_{2}
\end{array}\right)
$$

Now let us find out the matrix F^{5}.

$$
\begin{align*}
F^{5}=F^{2} \times F^{3}= & 8\left(\begin{array}{cc}
5 & 2 \\
2 & 1
\end{array}\right) 8\left(\begin{array}{cc}
34 & 14 \\
14 & 6
\end{array}\right) \quad[\mathrm{By}(34) \&(38)] \\
& =2^{6}\left(\begin{array}{cc}
198 & 82 \\
82 & 34
\end{array}\right) \tag{40}
\end{align*}
$$

In terms of Pell-Lucas numbers the above expression can be written as

$$
F^{5}=2^{6}\left(\begin{array}{ll}
Q_{6} & Q_{5} \tag{41}\\
Q_{5} & Q_{4}
\end{array}\right)
$$

In general using the above relations (39) and (41), the $n t h$ power of matrix F in terms of
Pell-Lucas numbers can be written as

$$
F^{n}=2^{3(n-1) / 2}\left(\begin{array}{cc}
Q_{n+1} & Q_{n} \tag{42}\\
Q_{n} & Q_{n-1}
\end{array}\right) \quad \text { if } n \text { is odd }
$$

IV. Identities satisfied by Pell and Pell-Lucas numbers

The following are some identities satisfied by Pell and Pell-Lucas numbers.

$$
\begin{equation*}
P_{n+1}+P_{n-1}=Q_{n} \tag{43}
\end{equation*}
$$

Proof: Applying Binet formula (3) to LHS we get

$$
\begin{aligned}
P_{n+1}+P_{n-1} & =\frac{a^{n+1}-b^{n+1}}{a-b}+\frac{a^{n-1}-b^{n-1}}{a-b} \\
& =\frac{a^{n+1}-b^{n+1}+\frac{a^{n}}{a}-\frac{b^{n}}{b}}{a-b} \\
& =\frac{a^{n+1}-b^{n+1}-a^{n} b+b^{n} a}{a-b} \quad[\mathrm{By}(9)] \\
& =\frac{a^{n}(a-b)+b^{n}(a-b)}{(a-b)}=a^{n}+b^{n} \\
& =Q_{n} \quad[\text { By (4)] }
\end{aligned}
$$

Thus (43) is proved.
2.

$$
\begin{equation*}
Q_{n}=2\left(P_{n}+P_{n-1}\right) \tag{44}
\end{equation*}
$$

Proof: Using (43), we obtain

$$
\begin{aligned}
Q_{n} & =P_{n+1}+P_{n-1} \\
& =\left(2 P_{n}+P_{n-1}\right)+P_{n-1} \quad[\text { By (1) }] \\
& =2\left(P_{n}+P_{n-1}\right)
\end{aligned}
$$

Hence (44) is proved.
3.

$$
\begin{equation*}
P_{n+2}-P_{n-2}=2 Q_{n} \tag{45}
\end{equation*}
$$

Proof:

$$
\begin{array}{rlrl}
\text { LHS }=P_{n+2}-P_{n-2} & =\left(2 P_{n+1}+P_{n}\right)-P_{n-2} & {[\text { By (1) }]} \\
& =2 P_{n+1}+\left(P_{n}-P_{n-2}\right) & & \\
& =2 P_{n+1}+2 P_{n-1} & {[\text { By (1) }]} \\
& =2\left(P_{n+1}+P_{n-1}\right) & \\
& =2 Q_{n} \quad[\text { By (43)] } &
\end{array}
$$

Thus (45) is proved.

$$
\begin{equation*}
Q_{n-1}+Q_{n+1}=8 P_{n} \tag{46}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
Q_{n-1}+Q_{n+1} & =2\left(P_{n-1}+P_{n-2}\right)+2\left(P_{n+1}+P_{n}\right) \\
& \left.=\left(2 P_{n-1}+P_{n-2}\right)+P_{n-2}+2 P_{n+1}+2 P_{n}(44)\right] \\
& =P_{n}+P_{n-2}+2\left(2 P_{n}+P_{n-1}\right)+2 P_{n} \quad[\text { By }(1)] \\
& =\left(2 P_{n-1}+P_{n-2}\right)+7 P_{n} \\
& =P_{n}+7 P_{n} \quad[\mathrm{By}(1)] \\
& =8 P_{n}
\end{aligned}
$$

Hence (46) is proved
5.

$$
\begin{equation*}
P_{2^{m}}=Q_{2^{m-1}} Q_{2^{m-2}} \ldots \ldots Q_{4} Q_{2} Q_{1} \tag{47}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
P_{2^{m}}=P_{2 \times 2^{m-1}} & =P_{2^{m-1}} Q_{2^{m-1}}\left[\because P_{2 n}=P_{n} Q_{n} \text { by }(14)\right] \\
& =Q_{2^{m-1}} P_{2 \times 2^{m-2}}
\end{aligned}
$$

By repeated application of (14) in RHS of above expression, we get

$$
\begin{aligned}
P_{2^{m}} & =Q_{2^{m-1}} Q_{2^{m-2}} P_{2^{m-2}} \\
& =Q_{2^{m-1}} Q_{2^{m-2}} P_{2 \times 2^{m-3}} \\
& =Q_{2^{m-1}} Q_{2^{m-2}} Q_{2^{m-3}} P_{2^{m-3}} \\
& \cdots \cdots \ldots \\
& =Q_{2^{m-1}} Q_{2^{m-2}} \ldots \ldots Q_{2^{m-(m-2)}} Q_{2^{m-(m-1)}} Q_{2^{m-m}} P_{2^{m-m}} \\
& =Q_{2^{m-1}} Q_{2^{m-2}} \ldots \ldots Q_{4} Q_{2} Q_{1} P_{1} \\
& =Q_{2^{m-1}} Q_{2^{m-2}} \ldots \ldots Q_{4} Q_{2} Q_{1}\left[\because P_{1}=1\right]
\end{aligned}
$$

Thus (47) is proved.
6.

Proof:

$$
\begin{equation*}
P_{-n}=(-1)^{n+1} P_{n} \tag{48}
\end{equation*}
$$

$$
\begin{aligned}
P_{-n} & =\frac{a^{-n}-b^{-n}}{a-b} \quad[\text { By (3) }] \\
& =\frac{\left(-\frac{1}{b}\right)^{-n}-\left(-\frac{1}{a}\right)^{-n}}{a-b} \quad[\mathrm{By}(9)] \\
& =\frac{\left[(-b)^{-1}\right]^{-n}-\left[(-a)^{-1}\right]^{-n}}{a-b} \\
& =\frac{(-1)^{n}\left(b^{n}-a^{n}\right)}{a-b} \\
& =\frac{(-1)^{n+1}\left(a^{n}-b^{n}\right)}{(a-b)} \\
& =(-1)^{n+1} P_{n} \quad[\mathrm{By}(3)]
\end{aligned}
$$

Hence (48) is proved
7.

Proof:

$$
\begin{equation*}
Q_{-n}=(-1)^{n} Q_{n} \tag{49}
\end{equation*}
$$

$$
\begin{aligned}
Q_{-n} & =a^{-n}+b^{-n} \quad[\mathrm{By}(4)] \\
& =\left(-\frac{1}{b}\right)^{-n}+\left(-\frac{1}{a}\right)^{-n}[\mathrm{By}(9)] \\
& =\left[(-b)^{-1}\right]^{-n}+\left[(-a)^{-1}\right]^{-n} \\
& =(-1)^{n}\left(a^{n}+b^{n}\right) \\
& =(-1)^{n} Q_{n} \quad[\operatorname{By}(4)]
\end{aligned}
$$

Thus (49) is proved.
8.

Proof:

$$
\begin{align*}
& \qquad \begin{aligned}
P_{m} Q_{n}+P_{n} Q_{m} & =\left(\frac{a^{m}-b^{m}}{a-b}\right)\left(a^{n}+b^{n}\right)+\left(\frac{a^{n}-b^{n}}{a-b}\right)\left(a^{m}+b^{m}\right)[\mathrm{By} \text { (3) \& (4)] } \\
= & \frac{a^{m+n}+a^{m} b^{n}-b^{m} a^{n}-b^{m+n}+a^{m+n}+a^{n} b^{m}-b^{n} a^{m}-b^{m+n}}{a-b} \\
= & \frac{2\left(a^{m+n}-b^{m+n}\right)}{a-b} \\
= & 2 P_{m+n}[\mathrm{By}(3)]
\end{aligned} \\
& \text { Hence (50) is proved } \\
&
\end{align*}
$$

9.

Proof:

$$
\begin{aligned}
& Q_{m} P_{n-m+1}+Q_{m-1} P_{n-m}=\left(a^{m}+b^{m}\right)\left(\frac{a^{n-m+1}-b^{n-m+1}}{a-b}\right)+\left(a^{m-1}+b^{m-1}\right)\left(\frac{a^{n-m}-b^{n-m}}{a-b}\right) \\
& {[\mathrm{By}(3) \&(4)] } \\
&=\frac{a^{n+1}-a^{m} b^{n-m+1}+b^{m} a^{n-m+1}-b^{n+1}+a^{n-1}-a^{m-1} b^{n-m}+b^{m-1} a^{n-m}-b^{n-1}}{a-b} \\
&=\frac{a^{n+1}-b^{n+1}+a^{n-1}-b^{n-1}-a^{m-1} b^{n-m}(a b+1)+a^{n-m} b^{m-1}(a b+1)}{a-b} \\
&=\frac{a^{n+1}-b^{n+1}}{a-b}+\frac{a^{n-1}-b^{n-1}}{a-b}[\because a b=-1 b y(9)] \\
&=P_{n+1}+P_{n-1}[\operatorname{By}(3)] \\
&=Q_{n} \quad[\operatorname{By}(43)]
\end{aligned}
$$

Thus (51) is proved.
10.

Proof:

$$
\begin{aligned}
\text { RHS } & =Q_{n} P_{2 n}-(-1)^{n} P_{n}=\left(a^{n}+b^{n}\right)\left(\frac{a^{2 n}-b^{2 n}}{a-b}\right)-(-1)^{n} P_{n} \\
& =\frac{a^{3 n}-a^{n} b^{2 n}+b^{n} a^{2 n}-b^{3 n}}{a-b}-(-1)^{n} P_{n} \\
& =\frac{a^{3 n}-b^{3 n}}{a-b}+\frac{a^{n} b^{n}\left(a^{n}-b^{n}\right)}{a-b}-(-1)^{n} P_{n} \\
& =P_{3 n}+(-1)^{n} P_{n}-(-1)^{n} P_{n} \quad[\text { By (3) }][\because a b=-1 \text { by (9) }] \\
& =P_{3 n}=\text { LHS }
\end{aligned}
$$

Hence (52) is proved
11.

Proof:

$$
R H S=P_{n}\left\{Q_{2 n}+(-1)^{n}\right\}=P_{n} Q_{2 n}+(-1)^{n} P_{n}
$$

$$
\begin{aligned}
& =\left(\frac{a^{n}-b^{n}}{a-b}\right)\left(a^{2 n}+b^{2 n}\right)+(-1)^{n} P_{n} \\
& =\frac{a^{3 n}+a^{n} b^{2 n}-b^{n} a^{2 n}-b^{3 n}}{a-b}+(-1)^{n} P_{n} \\
& =\frac{a^{3 n}-b^{3 n}}{a-b}-\frac{a^{n} b^{n}\left(a^{n}-b^{n}\right)}{a-b}+(-1)^{n} P_{n} \\
& =P_{3 n}-(-1)^{n} P_{n}+(-1)^{n} P_{n} \quad[\text { By (3) }][\because a b=-1 \text { by (9) }] \\
& =P_{3 n}=\operatorname{LHS}
\end{aligned}
$$

Thus (53) is proved.
12.

Proof:

$$
\begin{equation*}
Q_{3 n}=Q_{n}\left\{Q_{2 n}-(-1)^{n}\right\} \tag{54}
\end{equation*}
$$

$$
\begin{aligned}
R H S=Q_{n}\left\{Q_{2 n}-(-1)^{n}\right\} & =Q_{n} Q_{2 n}-(-1)^{n} Q_{n} \\
& =\left(a^{n}+b^{n}\right)\left(a^{2 n}+b^{2 n}\right)-(-1)^{n} Q_{n} \\
& =a^{3 n}+a^{n} b^{2 n}+b^{n} a^{2 n}+b^{3 n}-(-1)^{n} Q_{n} \\
& =\left(a^{3 n}+b^{3 n}\right)+a^{n} b^{n}\left(a^{n}+b^{n}\right)-(-1)^{n} Q_{n} \\
& =Q_{3 n}+(-1)^{n} Q_{n}-(-1)^{n} Q_{n} \quad[\operatorname{By}(4)][\because a b=-1 \text { by (9) }] \\
& =Q_{3 n}=L H S
\end{aligned}
$$

Hence (54) is proved.
13.

Proof:

$$
\begin{aligned}
R H S=Q_{n}{ }^{2}-4(-1)^{n} & =\left(a^{n}+b^{n}\right)^{2}-4(a b)^{n} \quad[B y(4) \& a b=-1 b y(9)] \\
& =\left(a^{n}-b^{n}\right)^{2} \\
& =\left(\frac{a^{n}-b^{n}}{a-b}\right)^{2}(a-b)^{2} \\
& =P_{n}^{2}(2 \sqrt{2})^{2}[\text { By (3) and (8)] } \\
& =8 P_{n}{ }^{2}=L H S
\end{aligned}
$$

Thus (55) is proved.
14.

Proof:

$$
\begin{equation*}
Q_{4 n}=8 P_{2 n}^{2}+2 \tag{56}
\end{equation*}
$$

$$
\begin{aligned}
L H S=Q_{4 n}=\left(a^{4 n}+b^{4 n}\right) & =\left(a^{2 n}-b^{2 n}\right)^{2}+2(a b)^{2 n}[\text { By }(4)] \\
& =\left(\frac{a^{2 n}-b^{2 n}}{a-b}\right)^{2}(a-b)^{2}+2(-1)^{2 n}[\because a b=-1 b y(9)] \\
& =P_{2 n}^{2}(2 \sqrt{2})^{2}+2[\text { By (3) and }(8)]\left[\because(-1)^{2 n}=1\right] \\
& =8 P_{2 n}^{2}+2=\text { RHS }
\end{aligned}
$$

Hence (56) is proved.
15.

Proof:

$$
\begin{equation*}
Q_{4 n+2}=8 P_{n+1}^{2}-2 \tag{57}
\end{equation*}
$$

$$
\begin{aligned}
L H S=Q_{4 n+2} & =\left(a^{4 n+2}+b^{4 n+2}\right)=\left(a^{2 n+1}-b^{2 n+1}\right)^{2}+2(a b)^{2 n+1}[\mathrm{By}(4)] \\
& =\left(\frac{a^{2 n+1}-b^{2 n+1}}{a-b}\right)^{2}(a-b)^{2}+2(-1)^{2 n+1}[\because a b=-1 b y(9)] \\
& =P_{2 n+1}^{2}(2 \sqrt{2})^{2}-2[\mathrm{By}(3) \text { and (8) }]\left[(-1)^{2 n+1}=-1\right] \\
& =8 P_{2 n+1}^{2}-2=\text { RHS }
\end{aligned}
$$

Thus (57) is proved.
16.

Proof:

$$
\begin{equation*}
Q_{n}^{2}+Q_{n+1}^{2}=Q_{2 n}+Q_{2 n+2} \tag{58}
\end{equation*}
$$

LHS $=Q_{n}^{2}+Q_{n+1}^{2}=\left(a^{n}+b^{n}\right)^{2}+\left(a^{n+1}+b^{n+1}\right)^{2}$

$$
=\left(a^{2 n}+b^{2 n}+2 a^{n} b^{n}\right)+\left(a^{2 n+2}+b^{2 n+2}+2 a^{n+1} b^{n+1}\right)
$$

$$
=\left(a^{2 n}+b^{2 n}\right)+2(a b)^{n}+\left(a^{2 n+2}+b^{2 n+2}\right)+2(a b)^{n+1}
$$

$$
=Q_{2 n}+Q_{2 n+2}+2\left\{(-1)^{n}+(-1)^{n+1}\right\}[\text { Ву (4) \& (9)] }
$$

$$
=Q_{2 n}+Q_{2 n+2}\left[\because(-1)^{n}+(-1)^{n+1}=0 \text { for } n=0,1,2, \ldots\right]
$$

$$
=R H S
$$

Thus (58) is proved.
17.

$$
\begin{equation*}
a^{n}=P_{n} a+P_{n-1} \tag{59}
\end{equation*}
$$

Proof: Using the values of Pell numbers we have
$a=a+0=P_{1} a+P_{0}$
$a^{2}=(1+\sqrt{2})^{2}=1+2+2 \sqrt{2}=2(1+\sqrt{2})+1=P_{2} a+P_{1}$
$a^{3}=(1+\sqrt{2})^{3}=1+3 \sqrt{2}+6+2 \sqrt{2}=5(1+\sqrt{2})+2$

$$
\begin{equation*}
=P_{3} a+P_{2} \tag{59c}
\end{equation*}
$$

Looking at the forms of the above three expressions, one can write in general that

$$
a^{n}=P_{n} a+P_{n-1}
$$

Thus (59) is proved.
18.

$$
\begin{equation*}
b^{n}=P_{n} b+P_{n-1} \tag{60}
\end{equation*}
$$

Proof: Using the values of Pell numbers we get

$$
\begin{equation*}
b=b+0=P_{1} b+P_{0} \tag{60a}
\end{equation*}
$$

$$
\begin{equation*}
b^{2}=(1-\sqrt{2})^{2}=1+2-2 \sqrt{2}=2(1-\sqrt{2})+1=P_{2} b+P_{1} \tag{60b}
\end{equation*}
$$

$$
b^{3}=(1-\sqrt{2})^{3}=1-3 \sqrt{2}+6-2 \sqrt{2}=5(1-\sqrt{2})+2
$$

$$
\begin{equation*}
=P_{3} b+P_{2} \tag{60c}
\end{equation*}
$$

Looking at the forms of the above three expressions, one can write in general that

$$
b^{n}=P_{n} b+P_{n-1}
$$

Hence (60) is proved.
19.

$$
a^{-n}=\left\{\begin{array}{lc}
a P_{n}-P_{n+1}, & \text { if } n \text { odd } \tag{61}\\
P_{n+1}-a P_{n}, & \text { if } n \text { even }
\end{array}\right.
$$

Proof: Replacing n by $(-n)$ in (59) we have

$$
\begin{aligned}
a^{-n} & =P_{-n} a+P_{-(n+1)} \\
& =a(-1)^{n+1} P_{n}+(-1)^{n+2} P_{n+1}[\mathrm{By}(48)] \\
& =(-1)^{n+1}\left[a P_{n}-P_{n+1}\right] \\
\Rightarrow a^{-n} & = \begin{cases}a P_{n}-P_{n+1}, & \text { if } n \text { odd } \\
P_{n+1}-a P_{n}, & \text { if } n \text { even }\end{cases}
\end{aligned}
$$

Thus (61) is proved.
20.

$$
b^{-n}=\left\{\begin{array}{lc}
b P_{n}-P_{n+1}, & \text { if } n \text { odd } \tag{62}\\
P_{n+1}-b P_{n}, & \text { if } n \text { even }
\end{array}\right.
$$

Proof: Replacing n by ($-n$)in (60) we get

$$
\begin{aligned}
b^{-n} & =P_{-n} b+P_{-(n+1)} \\
& =b(-1)^{n+1} P_{n}+(-1)^{n+2} P_{n+1}[\mathrm{By}(48)] \\
& =(-1)^{n+1}\left[b P_{n}-P_{n+1}\right] \\
\Rightarrow b^{-n} & = \begin{cases}b P_{n}-P_{n+1}, & \text { if } n \text { odd } \\
P_{n+1}-b P_{n}, & \text { if } n \text { even }\end{cases}
\end{aligned}
$$

Hence (62) is proved.
21.

$$
\begin{equation*}
a^{m} P_{n-m+1}+a^{m-1} P_{n-m}=a^{n} \tag{63}
\end{equation*}
$$

Proof:
LHS $=a^{m} P_{n-m+1}+a^{m-1} P_{n-m}=a^{m-1}\left(a P_{n-m+1}+P_{n-m}\right)$
Replacing n by $(n-m+1)$ in (59) we get

$$
a^{n-m+1}=P_{n-m+1} a+P_{n-m}
$$

Substituting (65) in (64) we obtain

$$
\begin{equation*}
L H S=a^{m-1} \times a^{n-m+1}=a^{n}=R H S \tag{65}
\end{equation*}
$$

Hence (63) is proved.
22.

$$
\begin{equation*}
b^{m} P_{n-m+1}+b^{m-1} P_{n-m}=b^{n} \tag{66}
\end{equation*}
$$

Proof:
LHS $=b^{m} P_{n-m+1}+b^{m-1} P_{n-m}=b^{m-1}\left(b P_{n-m+1}+P_{n-m}\right)$
Replacing n by ($n-m+1$) in (60) we have

$$
\begin{equation*}
b^{n-m+1}=P_{n-m+1} b+P_{n-m} \tag{67}
\end{equation*}
$$

Substituting (68) in (67) we get

$$
\begin{equation*}
L H S=b^{m-1} \times b^{n-m+1}=b^{n}=R H S \tag{68}
\end{equation*}
$$

Hence (66) is proved.
23.
$\sum_{i=0}^{n} P_{k i+j}= \begin{cases}\frac{P_{n k+k+j}-(-1)^{k} P_{n k+j}-P_{j}-(-1)^{j} P_{k-j}}{Q_{k}-(-1)^{k}-1} & \text { if } j<k \\ \frac{P_{n k+k+j}-(-1)^{k} P_{n k+j}-P_{j}+(-1)^{k} P_{j-k}}{Q_{k}-(-1)^{k}-1} & \text { if } j>k\end{cases}$
Proof:

$$
\begin{align*}
\sum_{i=0}^{n} P_{k i+j} & =\sum_{i=0}^{n} \frac{a^{k i+j}-b^{k i+j}}{a-b} \quad[\text { By (3) }] \\
& =\frac{1}{a-b}\left[a^{j} \sum_{i=0}^{n} a^{k i}-b^{j} \sum_{i=0}^{n} b^{k i}\right] \tag{70}
\end{align*}
$$

The summation of terms in geometric series is given by

$$
\begin{equation*}
\sum_{p=l}^{n} z^{p}=\frac{z^{l}-z^{n+1}}{1-z} \tag{71}
\end{equation*}
$$

Putting $p=i, l=0$ and $z=a^{k}$ in the above expression (71) we get

$$
\begin{equation*}
\sum_{i=0}^{n} a^{k i}=\frac{1-a^{k(n+1)}}{1-a^{k}}=\frac{a^{n k+k}-1}{a^{k}-1} \tag{72}
\end{equation*}
$$

Similarly putting $p=i, l=0$ and $z=b^{k}$ in (71) we have

$$
\begin{equation*}
\sum_{i=0}^{n} b^{k i}=\frac{1-b^{k(n+1)}}{1-b^{k}}=\frac{b^{n k+k}-1}{b^{k}-1} \tag{73}
\end{equation*}
$$

Substituting (72) and (73) in RHS of(70) we get

$$
\begin{aligned}
\sum_{i=0}^{n} P_{k i+j} & =\frac{1}{a-b}\left[a^{j}\left(\frac{a^{n k+k}-1}{a^{k}-1}\right)-b^{j}\left(\frac{b^{n k+k}-1}{b^{k}-1}\right)\right] \\
& =\frac{1}{a-b}\left[\frac{a^{j}\left(a^{n k+k}-1\right)\left(b^{k}-1\right)-b^{j}\left(b^{n k+k}-1\right)\left(a^{k}-1\right)}{\left(a^{k}-1\right)\left(b^{k}-1\right)}\right] \\
& =\frac{1}{a-b}\left[\frac{a^{j}\left(a^{n k+k} b^{k}-a^{n k+k}-b^{k}+1\right)-b^{j}\left(b^{n k+k} a^{k}-b^{n k+k}-a^{k}+1\right)}{a^{k} b^{k}-a^{k}-b^{k}+1}\right] \\
& =\frac{1}{a-b}\left[\frac{a^{j+n k+k} b^{k}-a^{j+n k+k}-a^{j} b^{k}+a^{j}-b^{j+n k+k} a^{k}+b^{j+n k+k}+b^{j} a^{k}-b^{j}}{(a b)^{k}-\left(a^{k}+b^{k}\right)+1}\right] \\
=\frac{1}{(-1)^{k}-Q_{k}+1} & \left.-\left(\frac{a^{n k+k+j}-b^{n k+k+j}}{a-b}\right)+\left(\frac{a^{k} b^{j}-a^{j} b^{k}}{a-b}\right)+\left(\frac{a^{j}-b^{j}}{a-b}\right)+(a b)^{k}\left(\frac{a^{n k+j}-b^{n k+j}}{a-b}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{(-1)^{k}-Q_{k}+1}\left[-P_{n k+k+j}+\left(\frac{a^{k} b^{j}-a^{j} b^{k}}{a-b}\right)+P_{j}+(-1)^{k} P_{n k+j}\right] \tag{74}
\end{equation*}
$$

[By (4) and (9)]
[By(3) and (9)]
Slightly modifying the $2^{\text {nd }}$ part within the brackets of RHS of the above expression (74) we get

$$
\begin{align*}
\frac{a^{k} b^{j}-a^{j} b^{k}}{a-b} & =\left\{\begin{array}{l}
\frac{(a b)^{j}}{a-b}\left(a^{k-j}-b^{k-j}\right) \text { if } j<k \\
\frac{(a b)^{k}}{a-b}\left(b^{j-k}-a^{j-k}\right) \text { if } j>k
\end{array}\right. \\
& =\left\{\begin{array}{ll}
(-1)^{j} P_{k-j} & \text { if } j<k \\
-(-1)^{k} P_{j-k} & \text { if } j>k
\end{array} \quad[\text { By (3) \& (9)] }\right. \tag{75}
\end{align*}
$$

Using (75) in (74) we obtain

$$
\begin{aligned}
& \sum_{i=0}^{n} P_{k i+j}=\left\{\begin{array}{l}
\frac{1}{(-1)^{k}-Q_{k}+1}\left[-P_{n k+k+j}+(-1)^{j} P_{k-j}+P_{j}+(-1)^{k} P_{n k+j}\right] \text { if } j<k \\
\frac{1}{(-1)^{k}-Q_{k}+1}\left[-P_{n k+k+j}-(-1)^{k} P_{j-k}+P_{j}+(-1)^{k} P_{n k+j}\right] \text { if } j>k
\end{array}\right. \\
& \Rightarrow \sum_{i=0}^{n} P_{k i+j}= \begin{cases}\frac{P_{n k+k+j}-(-1)^{k} P_{n k+j}-P_{j}-(-1)^{j} P_{k-j}}{Q_{k}-(-1)^{k}-1} & \text { if } j<k \\
\frac{P_{n k+k+j}-(-1)^{k} P_{n k+j}-P_{j}+(-1)^{k} P_{j-k}}{Q_{k}-(-1)^{k}-1} & \text { if } j>k\end{cases}
\end{aligned}
$$

Hence (69) is proved.
24.

$$
\begin{equation*}
\sum_{i=0}^{n} P_{k i}=\frac{P_{n k+k}-(-1)^{k} P_{n k}-P_{k}}{Q_{k}-(-1)^{k}-1} \tag{76}
\end{equation*}
$$

Proof: Putting $j=0$ in (69) for the case $j<k$ we get

$$
\begin{aligned}
\sum_{i=0}^{n} P_{k i} & =\frac{P_{n k+k}-(-1)^{k} P_{n k}-P_{0}-P_{k}}{Q_{k}-(-1)^{k}-1} \\
\Rightarrow \sum_{i=0}^{n} P_{k i} & =\frac{P_{n k+k}-(-1)^{k} P_{n k}-P_{k}}{Q_{k}-(-1)^{k}-1} \quad\left[\because P_{0}=0\right]
\end{aligned}
$$

Thus (76) is proved.
25.

$$
\sum_{i=0}^{n} P_{i+j}= \begin{cases}\frac{P_{n+1+j}+P_{n+j}-P_{j}-(-1)^{j} P_{1-j}}{2} & \text { if } j<1 \tag{77}\\ \frac{P_{n+1+j}+P_{n+j}-P_{j}-P_{j-1}}{2} & \text { if } j>1\end{cases}
$$

Proof: For $k=1$, we can write (69) as
$\sum_{i=0}^{n} P_{i+j}= \begin{cases}\frac{P_{n+1+j}+P_{n+j}-P_{j}-(-1)^{j} P_{1-j}}{Q_{1}+1-1} & \text { if } j<1 \\ \frac{P_{n+1+j}+P_{n+j}-P_{j}-P_{j-1}}{Q_{1}+1-1} & \text { if } j>1\end{cases}$
$\Rightarrow \sum_{i=0}^{n} P_{i+j}=\left\{\begin{array}{ll}\frac{P_{n+1+j}+P_{n+j}-P_{j}-(-1)^{j} P_{1-j}}{2} & \text { if } j<1 \\ \frac{P_{n+1+j}+P_{n+j}-P_{j}-P_{j-1}}{2} & \text { if } j>1\end{array} \quad\left[\because Q_{1}=2\right]\right.$
Hence (77) is proved.

V. Conclusion

Pell and Pell-Lucas numbers can be represented by matrices. The identities satisfied by these numbers can be derived using Binet formula. This study on Pell and Pell-Lucas numbers will inspire curious mathematicians to extend it further.

References

[1]. A.F.Horadam, Applications of modified Pell numbers to representations, Ulam Quart. , Vol.3, pp. 34-53, 1994
[2]. N. Bicknell, A primer on the Pell sequence and related sequence, Fibonacci Quart., Vol.13, No.4, pp. 345-349, 1975.
[3]. Ahmet Dasdemir, On the Pell, Pell-Lucas and modified Pell numbers by matrix method, Applied Mathematical Sciences,Vol.5, No.64, pp.3173-3181, 2011.
[4]. J.Ercolano, Matrix generator of Pell sequence, Fibonacci Quart., Vol.17, No.1, pp.71-77, 1979.
[5]. Naresh Patel and Punit Shrivastava, Pell and Pell-Lucas identities, Global Journal of Mathematical Sciences: Theory and Practical, Vol.5, No.4, pp.229-236, 2013.
[6]. S.F.Santana and J.L. Diaz-Barrero, Some properties of sums involving Pell numbers, Missouri Journal of mathematical Sciences, doi.10.35834/2006/1801033, Vol.18, No.1, 2006.

