Optimal Mix of Two or Moreproducts to Maximize the Contribution of Linear Programming Problem

Bhawna Agrawal ${ }^{\text {a }}$, Mohammad shafi bhat ${ }^{\text {b }}$
a, b Department of Mathematics, Rabindranath Tagore University, Bhopal, India, bhawnakhushiagrawal@gmail.com, shafimohiuddin38@gmail.com

Abstract

In this paper, a mathematical model is prepared for solvingoptimal mix of two or more products to maximize the contributionof linear programming problemusing graphical method. An optimization is founded by solving LPP both by manually and technically as an excel solver software. We get the basic feasible solution of LPP and trying to maximize the production with limited time hourand limited contribution.For Linear programming based optimization problems, Solver makes Linear programming very easy. It can forget difficult Simplex methods and Graphical methods. Solver takes care of the Mathematical programs of the Linear programming problem to be able to use solver we need to ensure to solver has been installed. Number of techniques can be used but an excel solver is readily available in any windows platform with easy to use with accuracy result.

KEYWORDS

Linear programming, Graphical methods, excel solver, LPP.

I. INTRODUCTION

Linear programming is a tool for solving optimization problems in industries as diverse as banking, education, petroleum, forestry and trucking.In a linear programming model the decision variables should completely describe the decision to be made.

An Operation research deals with optimum feasible result by number of methods which saves time, costs, less raw material. Operation research is a business based model.Optimization is a relevant topic and can be said as a way or root of life with finite resources and limited time. For solving supply chain problems uses time productively we use optimization. It is interesting and key topic for data science.

Let us consider a problem maze Furniture's makes chairs and tables that have to be processed through two machines M1 and M2. The time in hours required to make one table and one chair are given below.

Total of 200 hours are available on Machines M1 and 400 hours on M2. Contribution from the sale of a chair is Rs 30 and from a table is Rs 40 . Determine the optimal mix of tables and chairs so as to maximize the contribution.

Formulate the problem:

Maximize $Z=40 \mathrm{x}+30 \mathrm{y}$
Subject to constraint
$7 x+4 y \leq 200$
$5 \mathrm{x}+5 \mathrm{y} \leq 400$
$x \geq 0, y \geq 0$

Manually solved

To solve above we need to understand that this is classical and simple LPP.
The objective is clear we need to maximize the contribution the decision variables, number of tables and chairs to be made and the constraints of the capacity of machines M1 and M2.

Given

\mathbf{x}	\mathbf{y}		
7	4	\leq	200
5	5	\leq	400

1	0	\geq	0
0	1	\geq	0

Convert all the constraints inequality to equality.

\mathbf{x}	\mathbf{y}		
7	4	$=$	200
5	5	$=$	400
1	0	$=$	0
0	1	$=$	0

.[4]

INTERCEPTS

x	Y
0	50
28.57143	0
0	80
80	0
1	0
0	1

Chart for maximize the contribution

Using excel-sheet feasible solution is founded by plotting graph of all three equations.

Series 1 shows equation [1] with blue line
Series 2 shows equation [2] with orange line
Series 3 shows equation [3]with gray line

POINT----P				
X	7	4	\leq	200
Y	0	1	\geq	0
X	28.57143			
Y	0			

POINT----Q

\mathbf{X}	1	0	\geq	0
\mathbf{Y}	0	1	\geq	0
\mathbf{X}				
\mathbf{Y}	0			

POINT----R

\mathbf{X}	7	4	\leq	200
\mathbf{Y}	1	0	\geq	0
\mathbf{X}				
\mathbf{Y}	0			

Maximize $Z=40 x+30 y$

\mathbf{X}		\mathbf{Y}	\mathbf{Z}
\mathbf{P}	28.571	0	
\mathbf{Q}			$\mathbf{1 1 4 2 . 8 4}$
\mathbf{R}	0	0	
	0		$\mathbf{0}$

Thus by manually we obtained contribution of Rs 1500 .

Now by Excel Solver

Machine	Table	Chair
M1	7	4
M2	5	5

[A] Formulate part

Step 1. Initially put decision variables.

	Table	Chair	Total
Decision Variable			
Contribution			
	40	30	
M1			200
M2	7	4	400

Step 2. Now to Formulate. Next contribution that has been given to us i.e., tables makes us 40 Rs and chair makes us 30 Rs. Total contribution is equal to contribution of one table multiply by number of tables to contribution of one chair multiply by number of chairs.

	Table	Chair		Total
Decision Variable				
ontribution	40	30	0	
M1	7	4	200	
M2	5	5	400	

Step3. First contribution is the capacity of machine M1-----
Each table on M1 needs 7 hours and each chair on M1 needs 4 hours. The total capacity used is equals to the time taken by 1 table multiply by number of tables addition with time taken by 1 chair multiply by number of chairs.

Similarly,
Each table on M2 needs 5 hours and each chair on M2 needs 5 hours. The total capacity used is equals to the time taken by 1 table multiply by number of tables addition with time taken by 1 chair multiply by number of chairs.

	Table	Chair		Total
Decision Variable				
Contribution	40	30		0
M1	7	4		0
M2	5	5		0

Thus we obtained;

	Table	Chair		Total
Decision Variable				
Contribution	40	30		0
M1	7	4		0
M2	5	5	0	

Step 4. Now Add the available capacityi.e., maximum capacity of M1 is 200 and M2 is 400 .

	Table	Chair		Total	Max Capacity
Decision Variable					
Contribution	40	30		0	
M1	7	4		0	
M2	5	5		0	400

Step 5. Now the solver part on excel-sheet
Move to Data in menu-bar then click to solver we get

Next

For set objective Total cost is maximize i.e., yellow portion Also for changing variable cell select table and chair of decision variable i.e., green portion

Press Add
Maximize $=40 x+30 y$

Machine	Table	Chair
M1	7	4
M2	5	5

	Table	Chair	Total	Max Capacity
Decision Variable				
Contribution	40	30	0	
M1	7	4	0	200
M2	5	5	0	$-\ldots$

Then after we obtained after pressing ok button.

Answer Report

Sensitive Report

		veicuatioulir					-uı"ıcuivis		suturime	
A1					f_{x}		oft	. 0	ity	
A	B		C			D	E	F	G	H

1 Microsoft Excel 16.0 Sensitivity Report
2 Worksheet: [trial (version 1).xlsb]Sheet3
Report Created: 2/22/2023 6:33:34 PM
4
5
6 Variable Cells
\(\left.$$
\begin{array}{ccrr}\hline & & \begin{array}{r}\text { Final } \\
\text { Cell }\end{array} & \begin{array}{r}\text { Reduced } \\
\text { Value }\end{array}
$$

Gradient\end{array}\right]\)| $\$ C \$ 58$ | Decision Variable Table | 0 | -12.5 |
| :--- | :--- | ---: | ---: |
| $\$ D \$ 58$ | Decision Variable Chair | 50 | 0 |

Constraints

Cell	Name	Final Value Multiplier	
$\$ F \$ 61$	M1 Total	200	7.5
$\$ F \$ 62$	M2 Total	250	0

Limit Report

II. CONCLUSION

Usingmathematical model, we have contributed less amount with limited time to get good production of furniture's. As per solution we should make 50 chairs and no table and we will have the contribution of Rs 1500 .We will completely utilize the capacity on machine M1 and we will utilize 250 out of 400 hours available on M2. Thus we obtained Answer report, sensitive report and limited report.

Thus the optimal mix of tables and chairs so as to maximize the contribution is done with graphical and solver method for solving LPP.

REFERENCES

[1]. Adukia, K. L., Agrawal, B. (2022). OPTIMAL SOLUTION OF ASSIGNMENT PROBLEM WITH THE HELP OF LEAST VALUE ALGORITHM. International Journal of Research and Analytical Reviews, 9(4), pp.335-341. http://ijrar.org/viewfull.php?\&p_id=IJRAR22D2981 DOI (Digital Object Identifier) - http://doi.one/10.1729/Journal. 32536
[2]. Adukia, K. L., Agrawal, B. (2022). Optimal solution of fuzzy linear programming problems for trapezoidal number by using method of matrix inversion. ©IJEDR 2022, 10(4), pp.80-84.https://www.ijedr.org/archive.php?vol=10\&issue=4\#IJEDR2204012
[3]. Agrawal, B., Kumar, S., \& Sharma, G. OPTIMUM SOLUTION OF A TRANSPORTATION PROBLEM WITH AN EXCEL SOLVER. International Journal of Research and Analytical Reviews, 9(3), pp.892-901. http://ijrar.org/viewfull.php?\&p_id=IJRAR22C1598 DOI (Digital Object Identifier) - http://doi.one/10.1729/Journal. 33184
[4]. Agrawal, B., Kumar, P. (2022). AN APPROACH OF L.P.P METHOD-GAME PROBLEM USING SIMPLEX METHOD. International Journal of Research and Analytical Reviews, 9(4), pp.927-935.http://ijrar.org/viewfull.php?\&p_id=IJRAR22D2939 DOI (Digital Object Identifier) - :http://doi.one/10.1729/Journal. 33185
[5]. Agrawal, B., Singh, P. (2022). LINEAR PROGRAMMING IN AN OPERATION RESEARCH FOR OPTIMUM BEST SOLUTION IN REAL WORLD PROBLEM USING EXCEL SOLVER. International Journal of Research and Analytical Reviews, 9(4), pp.34-40. http://ijrar.org/viewfull.php?\&p_id=IJRAR22D1602 DOI (Digital Object Identifier) http://doi.one/10.1729/Journal. 33183
[6]. Barnhart, C., Belobaba, P., \&Odoni, A. R. (2003). Applications of operations research in theair transport1 industry. Transportation Science, 37(4), pp. 368-391.
[7]. Gangrade, A., Agrawal, B., Kumar, S., \&Mansuri, A. (2022). A study of applications of graph colouring in various fields. International Journal of Statistics and Applied Mathematics, 7(2), pp.51-53. DOI: 10.22271/maths.2022.v7.i2a.795.
[8]. Haider, Z., Fareed, R., Tariq, M. B., Usman, S., Uddin, N., \& Khan, S. (2016). "Application of Linear Programming for Profit Maximization": A Case of Paints. International Journal of Management Sciences and Business Research, 5(12), pp. 144-151.
[9]. Jain, Amit Kumar, et al. "Application of Linear Programming for Profit Maximization of a Pharma Company." Journal of Critical Reviews 7.12 (2020): pp. 1118-1123.
[10]. Kiok, L. T. (2009, June). Practical operations research applications for healthcare managers. Annals of the Academy of Medicine Singapore.
[11]. MohdBaki, S., \& Cheng, J. K. (2021). A Linear Programming Model for Product Mix Profit Maximization in a Small Medium Enterprise Company. International Journal of Industrial Management, 9, pp. 64-73.
[12]. Robinson, Lawrence W. "Baseball playoff eliminations: An application of linear programming." Operations Research Letters 10.2 (1991): pp. 67-74
[13]. Shivlani, N. (2019). Applications of Operations Research in the food delivery industry. International Journal of Advance Research, 5(5), pp. 396-400.
[14]. Shrivastava, B., Agrawal, B., \& Kumar, S. (2022). Fuzzy linear programming problem with α-cut and roubast ranking methods. International Journal of Statistics and Applied Mathematics, 7(2), pp.57-62.DOI: 10.22271/maths.2022.v7.i2a.797.
[15]. Soni, Kiran, and K. Saxena. "A study of applicability of waiting line model in health care: a systematic review." Operation Research 19.1 (2011): pp. 75-91.
[16]. Tewari, P., \& Agrawal, B. (2022). A study of linear programming technique. International Journal of Statistics and Applied Mathematics, 7(2), pp 54-56. DOI: 10.22271/maths.2022.v7.i2a.796.

