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Abstract-This paper deals with a linear discriminant function based on the development of a nonparametric 

statistic. The statistic is defined as a maximum rank sum statistic which maximizes the sum of the ranks 

associated with the observations from one sample, based on the distances of all observations from two samples 

to a hyperplane. The optimal hyperplane which gives the maximum rank sum statistic is considered as a 

discriminant function for the two-population discriminant analysis. Mixed-integer and linear programming 

formulations are then derived for obtaining this type of nonparametric statistic. An efficient algorithm for 

computing this statistic is developed for the special case in which both samples are two-dimensional. Monte 

Carlo studies are conducted to evaluate the performance of the discriminant function derived from the maximum 

rank sum statistic in comparison with some statistical discriminant functions. The results show that the new 

discriminant function is competitive in various noncontaminated situations and performs better in some 

contaminated situations. 
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I. Introduction 
This paper deals with a formulations and methods of obtaining a nonparametric statistic and discusses 

an example usage of this statistic for constructing a two-population discriminant function. The statistic to be 

considered may be defined through the solution of the following problem. Let ,ix 1 1,......, ,i n jy ,

2 1,......, ,j n  be the m-dimensional samples from continuous populations I and II, respectively. The 

problem is to determine an m-dimensional column vector  1 ,......., 'mc c c ,
kc   ,

 1,....., ,k m  and not all 'kc s  equal zero, such that the statistic  
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 The problem is equivalent to finding an m-dimensional hyperplane with coefficient vector c such that 

after ranking in ascending order the distances for all x’s and y’s to the hyperplane, the sum of the ranks 

associated with the y’s is maximized.The equivalence of these two problems can be illustrated as follows. Let

1,  1,....., ,i id x c i n   and 
2,   1,....., ,j je y c j n   be the distances of xi and yj to a hyperplane with 

coefficient vector c. Let the x’s and y’s be ranked based on the combined values of di and ej, ranking in 

ascending order. When ,( ) 0j i j iy x c e d   yj hasa higher or equal rank than xi.The value of  

1

1

( )
n

j i

i

y x c


   then gives the number of times yj has a higher or equal rank than x’s ,
2  1,.....,j n . Also, 

S then represents the total number of times the ranks of the y’s are higher or equal to the ranks of the x’s. Let R 

be the sum of the ranks of 
21,....., ny y  among 

11,  ..., nx x and
21,....., ny y . The relationship between S and R is 
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given by  2 2 2/ 1S R n n   . Therefore, the vector c which gives the maximum value of S, denoted as S
*
, 

also gives the maximum value of R. The statistic S
*
 is thus defined as the maximum rank sum statistic. The 

motivation of deriving this nonparametric statistic is to use the corresponding hyperplane as a linear 

discriminant function for the two-population discriminant analysis problem. The problem can be defined as 

follows. Let 
1, 1,........ix i n and 

2, 1,......., ,jy j n be the m-dimensional training samples from 

populations I and II, respectively. A linear decision rule with coefficient vector c and a constant is to be 

derived to classify a new observation z into one of the two populations: if    0L z zc    , classify z into 

population I; otherwise, classify z into population II. The objective is to find a decision rule such that some 

measure of the probability of misclassification is minimized. Anderson [1], Goldstein and Dillon [3], and 

Lachenbruch [4]. The hyperplane obtained from the maximum rank sum statistic is to be considered as a 

discriminant function, it should be noted that the value of  is undetermined from the statistic. Therefore, the 

hyperplane cannot be used directly as a regular discriminant function. But this problem can be solved if we 

assume that the hyperplane passes through the origin (i.e.,  = 0) and use a ranking procedure to assign a new 

observation z as follows.  

Step 1. Compute
1,   1,.....,iid x c i n   and 

2 ,   1,....., ,j je y c j n   where di and ej are the distances of 

xi and yj to the hyperplane with coefficient vector c and passing through the origin. For a new observation z, 

compute   ,h zc  the distance of z to the hyperplane.  

Step 2. Let 
x  be the rank of h among h and di , 1 1,.....,i n , ranking in descending order. Let 

y be the rank 

of h among hand
2,  1,.....,je j n , ranking in ascending order.  

Step 3. Compute  1/  1x xp n  and  2/  1y yp n  .The ranking procedure is then of the form:  

(i) if 
x yp p  assign z to population I; 

(ii) if 
x yp p assign z to population II; and  

(iii) if
x yp p use a non-ranking procedure to assign z.  

In the above ranking procedure ( )x yp p represents the probability of having an observation at least as extreme 

as z in the direction of the ' ( ' ).y s x s Therefore this procedure has the objective of minimizing the total 

probability of misclassification. When
x yp p , any non-ranking procedure (e.g. Fisher's linear discriminant 

function [1]), can be used to assign z.  

The rank discriminant function obtained from the maximum rank sum statistic also has the following properties.  

(1) If the two training samples are linearly separable, this rank discriminant function will classify all the 

observations correctly. This is because the largest possible rank sum will be obtained, if there exist a hyperplane 

such that, relative to the hyperplane, every observation in one sample has a higher rank than each of the 

observations in the other sample. This is one of the desirable properties that every discriminant function should 

have.  

(2) The relative positions among the observations contribute significantly to the determination of this 

discriminant function in addition to the magnitude of the data. This is due to the characteristics of both the 

maximum rank sum statistic and the rank procedure. The existence of outliers in the samples will have less 

effect on this discriminant function than on some parametric discriminant functions. This property is also useful 

if the samples are contaminated. This discriminant function should be more robust against contamination than 

those which do not have this property. In section 2 some mathematical formulations and their solution 

procedures are suggested for the determination of the maximum rank sum statistic. Monte Carlo studies are 

reported in section 3 for the performance of the rank discriminant function from this statistic and several other 

discriminant functions. A summary is presented in section  
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II. Derivation of the Maximum Rank Sum Statistic 
The problem (1) discussed in section 1 may be formulated as a mixed-integer programming problem as follows:  

 minimize
1 2
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In other words, Pi,j equals 1 if yi has a smaller rank than xi relative to the hyperplane with coefficients c. 

Therefore the vector c which minimizes T will also give the maximum rank sum statistic S*. To avoid the 

difficulty of assigning the value of K for a given set of samples and nonlinearity associated with the last 

constraint, the problem may be reformulated as follows:  

 minimize
1 2
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where 
i jP and c are the same as defined in model (2), Dk and Ek are also zero-one variables to restrict one Ck 

equal to  +1  or  – 1, and the other c's within (1, +1); k has a lower bound:  

 
*

, ,
max (| |)j k i k
i j k

K m y x  . 

Note that formulation (3) is very similar to the mixed-integer program given in [5] except that there are more 

constraints and zero-one variables in (3). Formulation (3) can, therefore, be solved by either a branch-and-bound 

algorithm directly or with the use of Benders' decomposition [2]. But because of the large number of zero-one 

variables involved in (3), the use of those solution procedures is quite difficult except when the sample size is 

very small. An efficient algorithm for the two-characteristic problem (m = 2), however, can be developed as 

follows.  

Let (1) 1 2...... ( ),s s N N n n   , be the ordered slopes of the lines each of which passes through a 

combination of one x and one y. Assume that a rank sum statistic S is computed from a line with slope s such 

that (1) ( 1) , (1,...., 1)is s s i N    . If the position of the line is changed, the value of S will be the same as 

long as the slope of the line is still between ( )is and ( 1)is  .  



A Maximum Rank Sum Statistic and its Application to Real Data Set 

DOI: 10.9790/5728-1902020108                                  www.iosrjournals.org                                            4 | Page 

Therefore, in this case there are at most (N + 1) situations which may give different values of the rank sum 

statistic. In addition, since the intercept of a line has no effect on the value of the statistic, without loss of 

generality we may assume that the line to be determined passes through the origin. The complete algorithm for 

the two-characteristic problem is now presented below.  

Step 1. Initialize l = 0 and S* = 0. Calculate the slopes  

  
2 2 1 1( ) / ( ),t j i j is y x y x    

1 21,..., , 1,...,i n j n  wheret = 1,...,n1n2 = N denotes an index for each combination of i and j.  

Step 2. Order the slopes , 1,....,ts t N , such that 
(1) ... ( ).s s N  .  

Step 3.Let  ( ( ) ( ) ( ) ( )1) 1 1,  / 2t t tss s ss s s     ), t = 2, ...,N, and   ( )1   ,Nss N s     where  is a 

small positive constant.  

Step 4. Let  1l l  . Compute the distances di and ej of each xi and yj to the line with slope 
 l

ss . The 

distances are proportional to the Eucledian distance from the points to the line.  

Step 5. Rank the combined distances 
11,........, nd d and 

21,........, ne e in ascending order and compute the sum 

of the ranks of the y's , S, from the ranked distances. If S is greater than the current maximum rank sum S
*
, let S

*
 

= S. Go to step 4 if  1l N  ; otherwise, terminate.  

To compute the distance d of a point  1 2 ,z z z  to a line with slope s in step 4, the following simple formula 

may be used: 1 2d z s z    

A software R program has been developed for the above algorithm. For simplicity only the first optimal slope is 

recorded if multiple solutions exist. Some limited computational experience indicates that this algorithm can 

solve problems with almost any sample size in a reasonable amount of computing time.  

To obtain a statistic which has similar properties as the maximum rank sum statistic S
*
 but is computationally 

feasible for problems with more than two characteristics (m > 2), a new formulation has to be developed. One of 

the alternatives which may provide a reasonable statistic is as follows. For any hyperplane with coefficient 

vector c, let ( )ij i jt x y c   be the difference of the distances from xi and yj to the hyperplane. Note that yj will 

have a smaller rank than xi if and only if 0i jt  . To maximize the rank sum of the y's, a penalty 
i jt  may be 

assigned to the 
i jx y  pair if 0i jt  . Therefore, a statistic may be developed by determining a hyperplane such 

that the total penalty is minimized. The problem may be formulated as follows:  

minimize 

21

1

1 1

nn

i j

i j

T t
 

 ; subject to 
1 2

1

( )( ) 0, 1,..., , 1,...,
m

ik j k k i j

k

x y c t i n j n


      (4) 

2

1

1
m

k

k

c


 , 0,i j kt c , unrestricted in sign. 

The equality constraint in (4) is required to ensure that the trivial solution 0, 0k i jc t  , for all i, j, and k, is 

infeasible. Note that although statistics T1 and T are not the same, T1 also has the property that the y’s will tend 

to have larger ranks than the x’s. To avoid the difficulty of solving formulation (4) due to the existence of a 

nonlinear constraint, a small-value “threshold" (<0) may be used to replace each zero on the right-hand side of 

the first (n1 + n2) constraints. In this way the trivial null solution will be infeasible and the formulation becomes 

a linear program.  
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The new formulation may be written as follows:  

minimize
1 2

2

1 1

n n

i j

i j

T t
 

  

subject to 
1 2

1

( ) , 1,...., , 1,....,
m

i j j k k i j

k

x y c t i n j n


     , (5) 

0,i j kt c unrestricted in sign.  

Another statistic which might provide a good approximation to T can be obtained from the following 

formulation:  

maximize
1 2

3

1 1 1 1

( )
n nm m

j k i k k k k

k i j k

T y x c c c 
   

      

subject to  

2

1

1
m

k

k

c


    (6) 

where and c are m-dimensional column vectors.  

Table 1 

Values of Skewness and Kurtosis of the five distributions used in the Monte Carlo studies. 

Distribution Skewness Kurtosis 

1 0.0 1.8 

2 0.0 3.0 

3 0.0 9.0 

4 0.5 8.8 

5 1.6 8.8 

In formulation (6) the statistic T3 is obtained by maximizing the sum of differences of the distances from yj and 

xi to the optimal hyperplane with coefficients c. This problem may be solved quite easily by the method of 

Lagrange multipliers. The optimal solution of ck is given by 
* / || ||k kc   . The difference between 

formulations (5) and (6) is that in (5) only the positive values of ( )i k j k kx y c  are considered in the objective 

function, whereas in (6) both positive and negative values are considered. To evaluate how well formulations (5) 

and (6) approximate formulation (3), a Monte Carlo study was conducted to compare the sum of the ranks 

associated with the y’s obtained from those formulations. Random samples of sizes 24 or 30 were generated for 

both x’s and y’s from five bivariate distributions in the lambda family (6,7). These distributions are 

characterized by their skewness and kurtosis and their values are given in table 1. The means for the x and y 

samples were at (0, 0) and (1, 1), respectively. Both samples had identity covariance matrices. For a given 

sample size and type of distribution, a pair of random samples for the x’s and y’s were generated and the rank 

sums of the y’s were computed from the solutions of formulations (3), (5), and (6). The process was repeated 

100 times and the average rank sum from each formulation was computed. The ratios of the average rank sums 

among those three formulations for a sample size of 30 are shown in table 2. The result for a sample size of 24 is 

not given because it is very similar to the result given in table 2. 
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Table 2 

Ratios of average rank sums from formulations (3),(5) and (6) for a sample size of 30. 

Distribution (3)/(5) (3)/(6) (5)/(6) 

1 0.87 0.78 1.11 

2 0.86 0.83 1.03 

3 0.94 0.95 0.99 

4 0.87 0.88 0.99 

5 0.87 0.87 1.00 

The result in table 2 shows that except for distribution 1 both formulations (5) and (6) approximate (3) quite 

well. In addition, the differences between (5) and (6) are negligible. Therefore, formulation (6) may be a better 

approximation to (3) since its optimal solution can be obtained more easily than formulation (5).  

III. Monte Carlo studies 
In this section the results of Monte Carlo studies for evaluating the performance of the rank 

discriminant function obtained from the maximum rank sum statistic, denoted as MRSS, in comparison with 

some statistical discriminant functions. The maximum rank sum statistic was computed using the algorithm for 

the bivariate data presented in section 2. The statistical discriminant functions included in the studies are the 

Fisher's linear discriminant function (FLDF) [1] and the LDF with Huber-type robust estimates of means and 

co-variances (LDF-Huber) [8]. The Monte Carlo studies include several noncontaminated and contaminated 

cases which are characterized by their respective bivariate distributions. In the noncontaminated cases the 

components of the bivariate random samples were generated from one of the five lambda distributions specified 

in table 1. In all those five cases the two populations had variances one and correlation zero. The mean of the 

first population, 1, was always at the origin, and the mean of the second population, 2, was at either (0.7071, 

0.7071) or (1.0, 1.0) so that the Mahalanobis distance 
2
 equals 1 and 2 respectively. In the contaminated cases, 

both the contaminating and contaminated distributions for each population were specified as normal and were 

assumed to have the same mean. The means for populations 1 and 2 were the same as the means in the 

noncontaminated cases. All the contaminated distributions had identity covariance matrices. The contaminating 

distributions had correlation zero and standard deviations 5, 10, or 20, representing mild, moderate, and severe 

contamination, respectively. The percentage of contamination was assumed to be 20% of the total sample size 

for both populations. The Monte Carlo studies proceeded as follows: First, training samples of sample size 

either 16 or 30 from each population were generated from a given set of populations. Various discriminant 

functions were derived from those training samples. Two new sets of samples, each of size 60, were then 

generated from the same populations and were classified by the various sample discriminant functions. The 

percentage of misclassification was recorded for each function. The process was repeated 100 times to compute 

the average percent of misclassification for each discriminant function. The whole process was then repeated 

with another set of populations. Since all the distributions in the contaminated cases were normal, the bivariate 

random variates were generated directly from the GGNQF routine in IMSL.  

 

Table 3 

Average % of misclassification for the non-contaminated cases with 
2
 = 1 and sample size of 16. 

Procedures Distribution Type 

1 2 3 4 5 

FLDF 35.9 33.0 11.8 29.3 30.7 

LDF-Huber 36.1 33.0 11.3 29.1 29.9 

MRSS 33.5 32.8 13.3 29.6 30.2 

 

Table 4 

Average percentages of misclassification for the noncontaminated cases with 
2
 = 1 and sample size of 30. 

Procedures Distribution Type 

1 2 3 4 5 

FLDF 33.1 31.3 12.2 28.4 29.7 

LDF-Huber 33.3 31.4 11.4 28.1 29.4 

MRSS 33.4 31.7 12.8 28.8 29.7 
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Table 5 

Average percentages of misclassification for the noncontaminated cases with 
2
 = 2 and sample size of 16. 

Procedures Distribution Type 

1 2 3 4 5 

FLDF 28.6 25.2 7.0 21.1 22.9 

LDF-Huber 28.9 25.0 6.6 21.8 22.0 

MRSS 28.9 25.1 7.9 22.9 22.4 

 

Table 6 

Average percentages of misclassification for the noncontaminated cases with 
2
 = 2 and sample size of 30. 

Procedures Distribution Type 

1 2 3 4 5 

FLDF 26.5 24.5 6.9 21.3 22.4 

LDF-Huber 26.6 24.7 6.5 20.8 21.6 

MRSS 26.9 24.7 8.0 21.5 22.4 

 

Table 7 
Average percentages of misclassification for the noncontaminated cases with 

2
 = 1 and sample size of 16. 

Procedures Contamination Level 

Mild Moderate Severe 

FLDF 40.8 43.7 51.0 

LDF-Huber 38.5 43.1 44.7 

MRSS 40.9 40.5 40.5 

 

Table 8 

Average percentages of misclassification for the noncontaminated cases with 
2
 = 1 and sample size of 30. 

Procedures Contamination Level 

Mild Moderate Severe 

FLDF 38.6 45.0 49.4 

LDF-Huber 37.4 39.1 41.2 

MRSS 40.2 40.8 41.1 

 

Table 9 
Average percentages of misclassification for the noncontaminated cases with 

2
 = 2 and sample size of 16. 

Procedures Contamination Level 

Mild Moderate Severe 

FLDF 33.9 40.2 49.7 

LDF-Huber 32.4 39.0 41.7 

MRSS 35.9 36.5 36.0 

 

Table 10 
Average percentages of misclassification for the noncontaminated cases with 

2
 = 2 and sample size of 30. 

Procedures Contamination Level 

Mild Moderate Severe 

FLDF 33.5 39.7 46.7 

LDF-Huber 33.3 35.2 36.7 

MRSS 35.4 35.6 36.2 

 

The average percentages of misclassification for the non-contaminated cases are given in tables 3-6. 

The standard errors of the averages are all less than 0.01. As shown in the tables, the three procedures performed 

equally well in all situations. The differences between them are not statistically significant in any of the 
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cases.The results for the contaminated cases are given in tables 7-10. As expected, the LDF-Huber procedure is 

more robust against contamination than the regular LDF procedure. The RMRS procedure performed better than 

the LDF-Huber procedure for moderate and severe contamination with a sample size of 16, and the two 

procedures did equally well with a sample size of 30. On the other hand, the LDF-Huber procedure performed 

better than the RMRS procedure for mild contamination. The extent of overlapping between the two populations 

i.e.
2 21vs. 2     does not have a significant effect on the difference of the two procedures.  

IV. Conclusions 

A maximum rank sum statistic was defined and the methods of obtaining this nonparametric statistic 

were proposed. Some other nonparametric statistics, similar to this statistic but computationally more efficient, 

were also discussed and evaluated. This maximum rank sum statistic was then used to construct a linear 

discriminant function with the rank procedure. Results from a Monte Carlo study showed that the rank 

classification rule derived from this statistic was quite competitive for various noncontaminated situations and 

was robust against moderate and severe contamination.  

If a quadratic or higher-order classification rule is to be derived from the maximum rank sum statistic, 

the solution will be considerably more difficult to obtain even for the two-variable case. It will be more practical 

if either the statistic 
*

1T  or 
*

2T  defined in section 2 is used to provide an approximate solution.  
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