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Abstract 

In this article, some analytical methods, viz, the homotopy perturbation method (HPM) and the new iterative 

method (NIM) are proposed with reliable algorithms to solve linear and nonlinear fuzzy integro-differential 

equations in parametric form. Numerical examples are solved and finally comparison between the results obtained 

by the two methods which confirm efficiency and power of these methods in solving linear and nonlinear fuzzy integro-

differential equations. 
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I. Introduction 
The concept of fuzzy numbers and fuzzy arithmetic, introduced first by Zadeh in 1975 and then by Dubois 

and Prade [1], used widely in a large and various class of problems such as fuzzy linear systems [2,3], fuzzy 

differential equations [4,5], fuzzy integral equations [6-8] and fuzzy integro-differential equations [9-12]. More 

details about this concept can be found in [13,14]. In recent years, several numerical methods were suggested to 

solve integro-differential equations, for example, sine-cosine wavelets were used by Tavassoli, et al, to obtain a 

solution of linear integro-differential equations [15]. In [12] fuzzy integro-differential equation of first order 

derivative is solved by Abbasbandy and Hashemi using the variational iteration method (VIM). Some other 

worthwhile can be found in [17-21]. 

HPM, proposed first by Ji-Huan He [20-21], for solving differential and integral equations, linear and 

nonlinear, has been the subject of extensive analytical and numerical studies. The method, which is a coupling 

of the traditional perturbation method and homotopy in topology, deforms continuously to a simple problem which 

is easily solved. This method which does not require a small parameter in an equation, has a significant advantage 

in that it provides an analytical approximate solution to a wide range of linear and nonlinear problems in applied 

sciences[22-24]. 

NIM, proposed first by Daftardar-Gejji and Jafari [25-28], this method has proven useful for solving a variety 

of linear and nonlinear equations such as algebraic equations, integral equations, ordinary and partial differential 

equations and systems of equations as well. The NIM is simple to understand and easy to implement using computer 

packages and yields better results [33] than the existing Adomian decomposition method (ADM) [30] or VIM 

[31]. 

The aim of this work is to extend the analysis of the HPM and NIM with reliable algorithms to 

solve linear and nonlinear fuzzy integro-differential equations with comparing the obtained results. 

 

II. Preliminaries 
In this section, we set up the basic definitions of fuzzy numbers and fuzzy functions. 

Definition 1 [2,3,12]: A fuzzy number in parametric form is an ordered pair of functions 

 (𝑢(𝑟), 𝑢(𝑟)) , 0 ≤ 𝑟 ≤ 1 which satisfy the following requirements: 

1.  u(r) is a bounded left continuous nondecreasing function over [0; 1]; 

2. u(r) is a bounded left continuous nonincreasing function over [0; 1]; 

3. (𝑢(𝑟), 𝑢(𝑟)) , 0 ≤ 𝑟 ≤ 1 

The set of all fuzzy numbers, as given by definition 1, is denoted by E: One of the definitions for parametric 

form of a fuzzy number is given by Kaleva [32]. 

Definition 2 [33]: Let u = (𝑢, 𝑢) and v = (𝑣, 𝑣) be fuzzy numbers, then the operations of addition, subtraction 
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and multiplication are defined as follows: 

Addition:    

 

𝑢 ⊕ 𝑣 =  (𝑢, 𝑢)  ⊕  (𝑣, 𝑣)  =  (𝑢  +  𝑣, 𝑢 + 𝑣),                                   (1a) 

 

 

Subtraction: 

 

                                       𝑢 ⊝ 𝑣 =  (𝑢, 𝑢)  ⊖  (𝑣, 𝑣)  =  (𝑢  −  𝑣, 𝑢 − 𝑣),    (1b) 

Multiplication: 

 

𝑢 ⊙ 𝑣 =  (𝑢, 𝑢)  ⊙  =  (𝑚𝑖𝑛(𝑢 ⋅ 𝑣, 𝑢 ⋅ 𝑣, 𝑢 ∙ 𝑣, 𝑢 ⋅ 𝑣), max(𝑢 ⋅ 𝑣, 𝑢 ⋅ 𝑣, 𝑢 ∙ 𝑣, 𝑢 ⋅ 𝑣)),   (1c) 

 

Definition 3 [33,34]: The integral of a fuzzy function was defined in [34] by using the Riemann integral 

concept. Let 𝑓 ∶  [𝑎, 𝑏] → 𝐸; for each partition 𝑝 =  {𝑡0, … . , 𝑡𝑛} of [a;b] and for arbitrary  𝜉𝑖 ∈  [𝑡𝑖−1, 𝑡𝑖], 1 ≤
𝑖 ≤ 𝑛; suppose that 𝑅𝑃 = ∑ 𝑓(𝜉𝑖)

𝑛
𝑖=1 (𝑡𝑖 − 𝑡𝑖−1) and ∆ ∶= 𝑚𝑎𝑥{|𝑡𝑖 − 𝑡𝑖−1|, 𝑖 = 1, … . , 𝑛}  .The definite integral 

of f(t) over [a;b] is ∫ 𝑓(𝑡)𝑑𝑡 = lim
∆→0

𝑅𝑝
𝑏

𝑎
 provided that this limit exists in the metric D. If the fuzzy function f(t) 

is continuous in the metric D; its definite integral exists and also (∫ 𝑓(𝑡, 𝑟)
𝑏

𝑎
𝑑𝑡)  =  ∫ 𝑓(𝑡, 𝑟)

𝑏

𝑎
𝑑𝑡 and 

(∫ 𝑓(𝑡, 𝑟)
𝑏

𝑎
𝑑𝑡)  = ∫ 𝑓(𝑡, 𝑟)

𝑏

𝑎
𝑑𝑡. 

Definition 4 [8,12]: Let 𝑓 ∶  [𝑎, 𝑏] → 𝑅𝐹 and 𝑡0 ∈ (𝑎, 𝑏). We say that f is first-order Hukuhara differentiable at 

t0 if there exists an element 𝑓/(𝑡0) ∈ 𝑅𝐹; such that for all h > 0 sufficiently small, ∃ 𝑓(𝑡0 +
ℎ)  ⊝𝐻 𝑓(𝑡0), 𝑓(𝑡0) ⊝𝐻 𝑓(𝑡0 − ℎ)  and 

lim
ℎ→0

𝑓(𝑡0+ℎ)⊖𝐻𝑓(𝑡0)

ℎ
=  lim

ℎ→0

𝑓(𝑡0) ⊖𝐻 𝑓 (𝑡0−ℎ)

ℎ
=  𝑓/(𝑡0)                                    (2) 

where ⊝𝐻 is Hukuhara difference, RF is the set of all fuzzy functions and the limit is in the metric D. 

In parametric form, if 𝑓 =  (𝑓, 𝑓); then 𝑓/ = (𝑓/, 𝑓
/
), where 𝑓/, 𝑓

/
 are the first-order 

Hukuhara differentiable of 𝑓/, 𝑓
/
respectively. 

Definition 5 [12]: Let 𝑓/: (𝑎, 𝑏) → 𝑅𝐹 and 𝑡0 ∈ (𝑎, 𝑏) where f/ is the first-order Hukuhara differentiable of f at 

t0: We say that f/ is second-order Hukuhara differentiable at t0 if there exists an element f// (t0) ∈  RF; such that 

for all h > 0 sufficiently small, ∃ 𝑓/(𝑡0 + ℎ) ⊝𝐻 𝑓/(𝑡0), 𝑓/(𝑡0) ⊝𝐻 𝑓/(𝑡0 − ℎ) and 

                                 lim
 ℎ→0

𝑓/(𝑡0+ℎ)⊝𝐻𝑓/(𝑡0)

ℎ
 =  lim

ℎ→0

𝑓/(𝑡0)⊝𝐻𝑓/(𝑡0+ℎ)

ℎ
 =  𝑓∕∕(𝑡0)                                        (3) 

In parametric form, if 𝑓 =  (𝑓, 𝑓); then 𝑓∕/ = (𝑓∕/, 𝑓
/∕

), where 𝑓∕/, 𝑓
∕∕

 are the second-order 

Hukuhara differentiable of 𝑓∕/, 𝑓
/∕

respectively. 

 

III. Fuzzy integro-differential equation 
Consider the second-order derivative integro-differential equation: 

                      𝑢∕∕(𝑡) + 𝑢(𝑡) + 𝜆 ∫ 𝑘(𝑠, 𝑡)
𝑇

0
𝑢/(𝑠)𝑑𝑠 = 𝑔(𝑡)                                            (4) 

where t ∈ [0, T];𝜆 ∈ 𝑅; g(t) is a known function and the kernel k(s;t) > 0 with the initial conditions: 

                             𝑢(0) = ℎ0, 𝑢/(0) = ℎ1,  ℎ𝑖 ∈ 𝑅, 𝑖 = 0,1                                               (5) 

 

In the fuzzy case; that is u and g be fuzzy functions, let: 

𝑢(𝑡, 𝑟) = (𝑢(𝑡, 𝑟); 𝑢(𝑡, 𝑟)) , 𝑔(𝑡, 𝑟) = (𝑔(𝑡, 𝑟); 𝑔(𝑡, 𝑟)), 

 

 

        𝑢(𝑛)(𝑡, 𝑟) = (𝑢(𝑛)(𝑡, 𝑟), 𝑢
(𝑛)

(𝑡, 𝑟)) , 𝑛 = 1,2               (6) 

where all derivatives are with respect to t; be fuzzy functions. Therefore, related fuzzy 

integro-differential equation, Eq. (4) can be written in the form: 

𝑢∕∕(𝑡, 𝑟) + 𝑢(𝑡, 𝑟) + 𝜆 ∫ 𝑘(𝑠, 𝑡)
𝑇

0
𝑢/(𝑠, 𝑟)𝑑𝑠 = 𝑔(𝑡, 𝑟)   (7a) 

𝑢
∕∕

(𝑡, 𝑟) + 𝑢(𝑡, 𝑟) + 𝜆 ∫ 𝑘(𝑠, 𝑡)
𝑇

0
𝑢

/
(𝑠, 𝑟)𝑑𝑠 = 𝑔(𝑡, 𝑟)   (7b) 
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IV. The analysis of the considered methods 
In this section we analyze the considered methods for solving fuzzy integro-differential equations. 

 

4.1. HPM 

To illustrate the basic idea of the HPM, we consider the following nonlinear differential equation [19-23]: 

       L(u) + N(u) = f(t); t 𝜖 Ω         (8) 

with the boundary conditions: 

𝐵 (𝑢,
𝜕𝑢

𝜕𝑡
) = 0, 𝑡 𝜖 Γ         (9) 

Where L is a linear operator, N is a nonlinear operator, B is a boundary operator, f(t) is 

a known analytic function and Γ is the boundary of the domain  Ω. 

 By the homotopy technique, we construct a homotopy 𝑣(𝑡, 𝑝) ∶ Ω × [0,1] → 𝑅 which satisfies  

  𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑡)] = 0        (10a) 

  𝐻(𝑣, 𝑝) = [𝐿(𝑣) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑣) − 𝑓(𝑡)]] = 0        (10b) 

Where 𝑡 ∈ Ω, 𝑝 ∈  [0,1] is an impeding parameter and u0 is an initial approximation which satisfies the 

boundary conditions. Obviously, from (10), we have: 

             𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0, 𝐻(𝑣, 1) = 𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑡) = 0         (11) 

 

The change process of p from zero to unity is just that of v(t, p) from u0 to u. In topology, this is called 

deformation, 𝐿(𝑣) − 𝐿(𝑢0) and 𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑡) are called homotopic. The basic assumption is that the 

solution of Eq. (10) can be expressed as a power series in p : 

     𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯ `    (12) 

Setting p = 1; the approximate solution of Eq. (8) is given by: 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯    (13) 

The convergence of the series (13) has been proved in [20]. 

 

4.2. Reliable algorithm of HPM 

  According to the above homotopy technique, we introduce the following reliable algorithm for solving 

Eq. (4): 

𝑢∕∕(𝑡) + 𝑢(𝑡) − 𝑔(𝑡) = 𝑝 [−𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢∕(𝑠)𝑑𝑠
𝜆

0
]     (14a) 

or 

𝑢∕∕(𝑡) − 𝑔(𝑡) = 𝑝 [−𝑢(𝑡) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢∕(𝑠)𝑑𝑠
𝜆

0
]    (14b) 

 

Where p ∈ [0;1]. The homotopy parameter p always changes from zero to unity. In case p = 0; Eq. (14) 

becomes the differential equation: 

𝑢∕∕(𝑡) = 𝑔(𝑡) − 𝑢(𝑡)     (15a) 

Or 

𝑢∕∕(𝑡) = 𝑔(𝑡)      (15b) 

and when p = 1; Eq. (14) turns out to be the original integro-differential Eq. (4). The 

basic assumption is that the solution of Eq. (14) can be written as a power series in p : 

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + ⋯,     (16) 

and therefore, we approximate the solution u(t) by: 

𝑢(𝑡) = ∑ 𝑢𝑖(𝑡)∞
𝑖=0      (17) 

  

 In view of the above algorithm, we can construct the following algorithm for solving the two fuzzy 

integro-differential Eqs. (7) 

𝑢∕∕(𝑡, 𝑟) + 𝑢(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = 𝑝 [−𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢∕(𝑠, 𝑟)𝑑𝑠
𝑇

0
],    (18a) 

𝑢
∕∕

(𝑡, 𝑟) + 𝑢(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = 𝑝 [−𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢
∕
(𝑠, 𝑟)𝑑𝑠

𝑇

0
],    (18b) 

Or 

𝑢∕∕(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = 𝑝 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢∕(𝑠, 𝑟)𝑑𝑠
𝑇

0
],    (19a) 

𝑢
∕∕

(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = 𝑝 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢
∕
(𝑠, 𝑟)𝑑𝑠

𝑇

0
]    (19b) 

 

4.3. NIM 

 Also, to illustrate the basic idea of the NIM, we consider the following general functional equation [25-

28]: 
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𝑢(𝑡) = 𝑓(𝑡) + 𝑁(𝑢(𝑡))    (20) 

where N is a nonlinear operator from a Banach space B → B and f (t) is a known function. We are looking for a 

solution u of Eq. (20) having the series form: 

𝑢(𝑡) = ∑ 𝑢𝑖(𝑡)∞
𝑖=0      (21) 

 

The nonlinear operator N can be decomposed as: 

 

𝑁(∑ 𝑢𝑖(𝑡)∞
𝑖=0 ) = 𝑁(𝑢0) + ∑ {𝑁(∑ 𝑢𝑗

𝑖
𝑗=0 ) − 𝑁(∑ 𝑢𝑗

𝑖−1
𝑗=0 )}∞

𝑖=1    (22) 

 

From Eqs. (21) and (22), Eq. (20) is equivalent to: 

 

∑ 𝑢𝑖
∞
𝑖=0 = 𝑓(𝑡) + 𝑁(𝑢0) + ∑ {𝑁(∑ 𝑢𝑗

𝑖
𝑗=0 ) − 𝑁(∑ 𝑢𝑗

𝑖−1
𝑗=0 )}∞

𝑖=1    (23) 

 

The required solution or Eq. (20) can be obtained recurrencely from the recurrence relation: 

 

{

𝑢0 = 𝑓

𝑢1 = 𝑁(𝑢0)

𝑢𝑛+1 = 𝑁(∑ 𝑢𝑖
𝑛
𝑖=0 ) − 𝑁(∑ 𝑢𝑖

𝑛−1
𝑖=0 ), 𝑛 = 1,2, … .

    (24) 

 

Then 

∑ 𝑢𝑖
𝑛+1
𝑖=0 = 𝑁(∑ 𝑢𝑖

𝑛
𝑖=0 ), 𝑛 = 0,1,2, … ..   (25) 

And 

∑ 𝑢𝑖
∞
𝑖=0 = 𝑓 + 𝑁(∑ 𝑢𝑖

∞
𝑖=0 )     (26) 

 The n-term approximate solution for Eq. (9) is given by: u(t)= ∑ 𝑢𝑖
∞
𝑖=0 . 

 If N is a contraction, i.e. ‖𝑁(𝑥) − 𝑁(𝑦)‖ ≤ 𝑘‖𝑥 − 𝑦‖, 0 < 𝑘 < 1, thgen: 

‖𝑢𝑛+1‖ ≤ 𝑘𝑛+1‖𝑢0‖, 𝑛 = 0,1,2, … ..    (27) 

 

and the series ∑ 𝑢𝑖
∞
𝑖=0  absolutely and uniformly converges to a solution of Eq. (20) [35], which is unique in 

view of the Banach xed point theorem [36]. The convergence of the 

NIM has been proved in [27,28]. 

 

4.4. Reliable algorithm of NIM 

 According to NIM, we introduce the following reliable algorithm for solving Eq. (4): 

 

𝑢(𝑡) = ∑ ℎ𝑘
1
𝑘=0

𝑡𝑘

𝑘!
+ 𝐼𝑡

2[𝑔(𝑡)] + 𝐼𝑡
2 [−𝑢(𝑡) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢/(𝑠)𝑑𝑠

𝑇

0
] = 𝑓 + 𝑁(𝑢) (28) 

 

Where 𝐼𝑡
2 is a second-order (2-fold) integral operator, f=∑ ℎ𝑘

1
𝑘=0

𝑡𝑘

𝑘!
+ 𝐼𝑡

2[𝑔(𝑡)] and N(u)= 𝐼𝑡
2 [−𝑢(𝑡) −

𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢/(𝑠)𝑑𝑠
𝑇

0
]. We get the solution of (28) by employing the recurrence relation (24). 

 

 In view of the above algorithm, we can construct the following algorithm for solving the two fuzzy 

integro-differential Eqs. (7): 

 

𝑢(𝑡, 𝑟) = ∑ ℎ𝑘
1
𝑘=0 (0, 𝑟)

𝑡𝑘

𝑘!
+ 𝐼𝑡

2 [𝑔(𝑡, 𝑟)] + 𝐼𝑡
2 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢/(𝑠, 𝑟)𝑑𝑠

𝑇

0
] = 𝑓 + 𝑁(𝑢)   (29a) 

𝑢(𝑡, 𝑟) = ∑ 𝑢𝑘
1
𝑘=0 (0, 𝑟)

𝑡𝑘

𝑘!
+ 𝐼𝑡

2[𝑔(𝑡, 𝑟)] + 𝐼𝑡
2 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢

/
(𝑠, 𝑟)𝑑𝑠

𝑇

0
] = 𝑓 + 𝑁(𝑢)    (29b) 

 

Where 𝑓 =  ∑ ℎ𝑘
1
𝑘=0 (0, 𝑟)

𝑡𝑘

𝑘!
+ 𝐼𝑡

2 [𝑔(𝑡, 𝑟)], 𝑁(𝑢)= 𝐼𝑡
2 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢/(𝑠, 𝑟)𝑑𝑠

𝑇

0
], 𝑓 =

∑ 𝑢𝑘
1
𝑘=0 (0, 𝑟)

𝑡𝑘

𝑘!
+ 𝐼𝑡

2[𝑔(𝑡, 𝑟)], 𝑁(𝑢) = 𝐼𝑡
2 [−𝑢(𝑡, 𝑟) − 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑢

/
(𝑠, 𝑟)𝑑𝑠

𝑇

0
] and ℎ𝑘(0, 𝑟), ℎ𝑘(0, 𝑟), 𝑘 = 0,1   

are the initial values for the fuzzy integro-differential equations (7). 

 

 Remark 1: when the general functional (20) is linear, the recurrence relation (24) can 

be simplified in the form: 

{
𝑢0 = 𝑓,

𝑢𝑛+1 = 𝑁(𝑢𝑛), 𝑛 = 𝑜, 1, … .
     (30) 
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proof: See [41]. 

 

 The main advantage of the new modifications of the two methods, as shown in the 

following section, is that they can be applicable simply to a wide class of linear and nonlinear 

fuzzy integro-differential equations. 

 

V. Illustrative examples 
In this section one example are solved in order to demonstrate the 

simplicity and efficiency of the two methods. 

 

 Example  Consider the linear fuzzy integro-differential equation: 

𝑢∕∕(𝑡, 𝑟) + 𝜆 ∫ 𝑘(𝑡, 𝑟)𝑢(𝑡, 𝑟)𝑑𝑠
1

0
= 𝑔(𝑡, 𝑟), 0 ≤ 𝑡, 𝑟 ≤ 1,   (31a) 

with the initial conditions: 

𝑢(0, 𝑟) = (0,6), 𝑢/(0, 𝑟) = (3𝑟, −𝑟).    (31b) 

 

Where 𝑢(𝑡, 𝑟) = (𝑢(𝑡, 𝑟), 𝑢(𝑡, 𝑟)) , 𝜆 = 1, 𝑘(𝑠, 𝑡) = 𝑠2𝑡, 𝑔(𝑡, 𝑟) = (𝑔(𝑡, 𝑟), 𝑔(𝑡, 𝑟)) =  (
3𝑟𝑡

4
, 2𝑡 − 𝑟𝑡/4). 

 

 HPM: According to Eq. (14), the homotopy for (31) becomes. 

 

𝑢∕∕(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = −𝑝 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠

1

0

], 

 

and the homotopy for 𝑢 and 𝑢; according to Eq. (19), becomes: 

 

𝑢∕∕(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = −𝑝. [𝑡. ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
],    (32a) 

𝑢
∕∕

(𝑡, 𝑟) − 𝑔(𝑡, 𝑟) = −𝑝 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
],     (32b) 

Substituting: 𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + ⋯, 𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + ⋯  and the initial values: 𝑢(0, 𝑟) = 0, 𝑢/ =

(0, 𝑟) = 3𝑟, 𝑢(0, 𝑟) = 6 𝑎𝑛𝑑 𝑢
/
(0, 𝑟) = −𝑟  into (32) and equating the terms with equal powers of p; we can 

obtain the following two sets of integro-differential 

equations for 𝑢 and 𝑢 : 

 

𝑝0: 𝑢0
∕∕

=
3𝑟𝑡

4
, 𝑢0(0. 𝑟) = 0, 𝑢0

/( 0, 𝑟) = 3𝑟, 

𝑢0
∕∕

= 2𝑡 −
𝑟𝑡

4
, 𝑢0(0, 𝑟) = 6, 𝑢0

⁄
(0, 𝑟) = −𝑟′, 

𝑝1: 𝑢1
∕∕

= −𝑡 ∫ 𝑠2𝑢0(𝑠, 𝑟)𝑑𝑠

1

0

, 𝑢1(0, 𝑟) = 0, 𝑢1
∕(0, 𝑟) = 0, 

𝑢1
∕∕

= −𝑡 ∫ 𝑠2𝑢0(𝑠, 𝑟)𝑑𝑠

1

0

, 𝑢1(0, 𝑟) = 0, 𝑢1
/(0, 𝑟) = 0, 

𝑝2: 𝑢2
∕∕

= −𝑡 ∫ 𝑠2𝑢1(𝑠, 𝑟)𝑑𝑠

1

0

, 𝑢2(0, 𝑟) = 0, 𝑢2
∕(0, 𝑟) = 0, 

𝑢2
∕∕

= −𝑡 ∫ 𝑠2𝑢1(𝑠, 𝑟)𝑑𝑠

1

0

, 𝑢2(0, 𝑟) = 0, 𝑢2
∕(0, 𝑟) = 0, 

Consequently, by solving the above two sets of integro-differential equations, the rst few 

components of the homotopy perturbation solutions for 𝑢 and 𝑢 are obtained in the forms: 

𝑢0(𝑡, 𝑟) = 3𝑟𝑡 +
𝑟𝑡3

8
, 𝑢0(𝑡, 𝑟) = 6 − 𝑟𝑡 +

𝑡3

3
−

𝑟𝑡3

24
, 

𝑢1(𝑡, 𝑟) =  −
37𝑟𝑡3

288
, 𝑢1(𝑡, 𝑟) = −

37𝑡3

108
+

37𝑟𝑡3

864
, 
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𝑢2(𝑡, 𝑟) =  
37𝑟𝑡3

10368
, 𝑢2(𝑡, 𝑟) =

37𝑡3

3888
−

37𝑟𝑡3

31104
, 

and so on. The 6-term homotopy perturbation solution for (31) is given by: 

𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖
5
𝑖=0 (𝑡, 𝑟) = 3𝑟𝑡 −

𝑟𝑡3

483729408
,      (33a) 

𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖
5
𝑖=0 = 6 − 𝑟𝑡 −

𝑡3

181398528
+

𝑟𝑡3

1451188224
,    (33b) 

 

which converge to the exact solution, i.e. 𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖(𝑡, 𝑟)∞
𝑖=0 = 3𝑟𝑡 and 𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖(𝑡, 𝑟)∞

𝑖=0 = 6 − 𝑟𝑡. 
 NIM: According to (7), Eq. (31) gives the integro-differential equations: 

 

𝑢∕∕(𝑡, 𝑟) + 𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
= 𝑔(𝑡, 𝑟), 𝑢(0, 𝑟) = 0, 𝑢∕(0, 𝑟) = 3𝑟,  (34a) 

𝑢
∕∕

(𝑡, 𝑟) + 𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
= 𝑔(𝑡, 𝑟), 𝑢(0, 𝑟) = 6, 𝑢

∕
(0, 𝑟) = −𝑟,  (34b) 

 

Therefore, from (29), Eqs (34) are equivalent to the two integral equations: 

 

𝑢(𝑡, 𝑟) = 3𝑟𝑡 +
𝑟𝑡3

8
− 𝐼𝑡

2 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
],     (35a) 

𝑢(𝑡, 𝑟) = 6 − 𝑟𝑡 +
𝑡3

3
−

𝑟𝑡3

24
− 𝐼𝑡

2 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
]    (35b) 

 

Let 𝑁(𝑢) = −𝐼𝑡
2 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠

1

0
] , 𝑁(𝑢) = −𝐼𝑡

2 [𝑡 ∫ 𝑠2𝑢(𝑠, 𝑟)𝑑𝑠
1

0
]. Therefore, from (30), we can obtain the 

following first few components of the new iterative solution for 𝑢 and 𝑢 for (31): 

𝑢0(𝑡, 𝑟) = 3𝑟𝑡 +
𝑟𝑡3

8
, 𝑢0(𝑡, 𝑟) = 6 − 𝑟𝑡 +

𝑡3

3
−

𝑟𝑡3

24
, 

𝑢1(𝑡, 𝑟) = −
37𝑟𝑡3

288
, 𝑢1(𝑡, 𝑟) = −

37𝑡3

108
+

37𝑟𝑡3

864
, 

𝑢2(𝑡, 𝑟) =
37𝑟𝑡3

10368
, 𝑢2(𝑡, 𝑟) =

37𝑡3

3888
−

37𝑟𝑡3

31104
, 

 

and so on. The 6-term new iterative solution for (31) is given by: 

 

𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖
5
𝑖=0 (𝑡, 𝑟) = 3𝑟𝑡 −

𝑟𝑡3

483729408
,      (36a) 

𝑢(𝑡, 𝑟) = ∑ 𝑢𝑖(𝑡, 𝑟)5
𝑖=0 = 6 − 𝑟𝑡 −

𝑡3

181398528
+

𝑟𝑡3

1451188224
,    (36b) 

 

which is the same result as obtained by HPM in (33). 

 

 Let us dene the absolute value of the nth-term error by: |𝑒𝑛(𝑡, 𝑟)| = |𝑢∗(𝑡, 𝑟) − 𝑢𝑛(𝑡, 𝑟)|, where 

𝑢∗(𝑡, 𝑟)  is the exact solution and 𝑢𝑛(𝑡, 𝑟)  is the nth-term approximate solution obtained by HPM or NIM. It is 

clear from (33) and (36) that the smallest value of the absolute nth-term error is at t = r = 0; that is |𝑒𝑛(0,0)| =

|𝑒𝑛(0,0) − 𝑒𝑛(0,0)| = (0,0), 𝑛 = 0,1, . . ,5  and the largest value is at t = r = 1 as shown in Table 1 and that 

|𝑒𝑛| → 0 𝑎𝑠 𝑛 → ∞. It is clear from the table that as the number of iterations becomes large, the absolute error 

becomes small. In Fig. 1, we have plotted the approximate solution for (31), obtained by HPM and NIM in (33) 

and (36) and the corresponding exact solution for 𝑢 and 𝑢 at r = 1 : It is clear, from the Figs. that the two 

solutions are almost equal. 

 

Table 1 
      n                          0                   1                        2                    3                          4                   5 

|𝑒𝑛(1,1)|             1.25-1             3.472-3            9.6455             2.6792-6         7.4422-8      2.0673-9 

|𝑒𝑛(1,1)|           2.9167-1          8.1019-3          2.2505-4          6.2514-6         1.7365-7      4.8236-9 

 

VI. Conclusion 
In this work, the HPM and the NIM are successfully applied with reliable algorithms for solving linear 

and nonlinear fuzzy integro-differential equations. The obtained results show that the two methods are easy, 

simple and equal. Therefore, these two methods are very powerful and efficient techniques for solving linear and 

nonlinear fuzzy integro-differential equations. In conclusion, the HPM and the NIM may be considered as a nice 

refinement in existing numerical techniques and might find the wide applications. 
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