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Abstract 
In recent times, there has been an increasing level of research into quantum algorithms and its uses in order to 

find more efficient ways of computing. The Grover’s Search Algorithm is one such algorithm that has become 

popular that aims search for a given item in an unsorted database. In the following research experiment, 

Grover’s Algorithm was built using IBM Quantum and its time efficiency was compared against its classical 

simulator. It was found that the Grover’s Algorithm does in fact provide a better time efficiency than its clas-

sical simulator, but the correlation between the two times differs from their theoretical prediction. 
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I. Introduction 
 

First discovered in 1996, Grover’s algorithm provides a quadratic speedup com-pared to its classical simulator 

when trying to find a given element in an un-sorted database. If the classical simulator takes O(N) steps to 

complete the 

√ 

 

search, Grover’s algorithm would take O( N) steps. [1] The following research attempts to prove this 

relationship between the time efficiency of the Grover’s algorithm on a quantum computer and its classical 

counterpart on a classical computer. 

 

Cryptography has had vast improvements since the field of quantum computing was introduced. Due to the 

seminal research conducted by Grover [1] and Shor [2], problems that were unable to be solved using classical 

methods were now approachable by quantum methods. 

 

Grover’s algorithm has applications in cryptography for Quantum Key Dis-tribution (QKD) for sharing keys 

across a private network. It helps users to identify eavesdropping easily, and thus secures communication 

channels across a network.[3] 

 

However, Grover’s algorithm has shown to be a threat to modern cryptogra-phy as well [4]. Due to the faster 

speeds of computation, in the case of some encryption algorithms, specifically those that employ modern 

symmetric ciphers [5], the security measures of communication can be broken down faster by hack-ers, proving 

this to be a threat. 

 

Thus, the verification of this relation between the Grover’s algorithm and its classical simulator is essential to 

verify its potential benefits and threats to its variety of applications, which is the aim of the following research. 

 

II. Theoretical Background and Mathematical Meth-ods 
 

2.1 How Quantum Mechanics differs from Classical Me-chanics 

 

Classical mechanics usually concerns itself with the study of the macroscopic world and is deterministic in 

nature. Classical mechanics is applied in many events that we are familiar to in our daily lives. [6] 

 

While some quantum phenomena can be seen in our daily lives as well, quantum mechanics as a discipline 

largely deals with the microscopic world and is inher-ently probabilistic in nature – rather than providing a 

deterministic result for a certain phenomenon, it returns a probability distribution of a set of possible outcomes. 
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The three broad areas in modern physics are quantum physics, which deals with microscopic, subatomic 

particles like the motion of an electron, relativistic physics, which deals with macroscopic phenomena like 

planetary motion, and classical physics, which lies between these two extremes. While there is research being 

conducted in a cross between two of these fields, this classification acts as a broad distinction between the three 

fields. 

 

The prime example of how the classical mechanics differs from quantum me-chanics is present in the famous 

Young’s double slit experiment [7]. The setup of the experiment is as follows – a gun is placed with a barrier 

containing two slits in front of it and a backstop that detects the landing of the bullets from the gun behind it. 

 

In the classical sense, the bullets can only go through one of the two slits in the barrier. Thus, the probability of 

finding it at some location on the backstop is simply the sum of the probabilities from either slit. [8] 

 

 
Figure 1: Double Slit Experiment in the Classical World 

 

In the experiment presented in Figure 1, P12 = P1 + P2. P1 is the probability of the bullet going through the first 

slit, P2 is the probability of the bullet going through the second slit, and P12 is the combined probability of the 

two events. 

However, in the quantum world, the gun if replaced with an electron gun, then the probability wave of 

the electron can pass through both slits simultaneously and form an interference pattern on the backstop. This is 

due to the wave-particle duality of subatomic particles. Thus, the observed probability is not the sum of 

probabilities, but the sum of probability amplitudes of the two slits. [8] 

 

 
Figure 2: Double Slit Experiment in the Quantum World 

 

In the experiment presented in Figure 2, P12 = |ϕ1 + ϕ2|2. P1 = |ϕ1|2 is the probability of the electron going through 

the first slit, and P2 = |ϕ2|2 is the probability of the bullet going through the second slit, and P12 = |ϕ1 + ϕ2|2 is the 
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combined probability of the two events. Here, ϕ represents the probability amplitude of finding a particle in a 

given position or state. We can expand the result 

 

P12 = |ϕ1 + ϕ2|2 

 

to give 

P12 = |ϕ1|2 + |ϕ2|2 + 2Re[ϕ1ϕ∗2]. 

 

Their complex amplitudes can be expressed by their magnitudes and phases to result in 

 

P12 = P1 + P2 + 2  P1P2cos(θ1 − θ2), (1) 

where θ1 and θ2 are the phases of the probability amplitudes ϕ1 and ϕ2 respec-tively. 

 

The last term in equation 1 is known as the ”interference” term, and it shows that the probability of finding a 

particle in a given state P12 depends on the phase difference between the probabilities P1 and P2. 

 

This experiment is the prime example of how quantum mechanics is different from the classical mechanics we 

are all used to. 

 

2.2 Dirac’s notation 

 

To represent quantum systems in an easier way, Paul Dirac introduced his Dirac’s notation that used bra-ket 

notation to represent quantum states. These are vector state symbols that are used to represent quantum systems 

in differ-ent quantum states. Any ket of the form |ϕ can be expressed as the linear combination of basis vectors 

that span a vector space V as 

 

|ϕ =    ϕj |Ej (2) 

j  

 

where |Ej are all the basisvectors defined on V and any superposition is repre-sented by a unitary linear 

combination of the two states. 

 

Bras are used to construct maps from a vector space V to its corresponding dual vector state V ∗. Any bra ϕ| can 

be constructed by 

 

ϕ| = |ϕ † = ϕ∗j  Ej | . 

j 

 

This allows us to write the scalar product of two vectors as 

 

 

ϕ ψ 

 

= ϕ∗ψ 

j |  j 

    j  

and it follows from this that 

 

ψ|ψ = |ψ|2. (3) 

 

The quantity |ψ|2 can be conceptualised as the Length2 of the vector ψ. [8] 

 

2.3 Qubits 

 

In a classical system, bits are represented by a Boolean value of either 0 or 1, and these are the only two states 

that the bit can exist in. However, in the quantum world, a quantum bit, or a “qubit”, can exist as a superposition 

of two basis states that exist in a two-dimensional space. Conventionally, qubit basis states are represented by 

 

|0 = 1 and |1 = 0 , 
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0 1 

 

and thus, any qubit |ϕ can be represented by 

 

|ψ = a0 |0 + a1 |1 , 

 

where |0 and |1 are the arbitrary states defined previously, and the values a0 and a1 are the normalised 

coefficients of the vectorϕ along the vectors |0 and |1 respectively. The probability of finding |ψ in the state |0 is 

|a0|2 and in the state |1 is |a1|2. By Born’s rule [9], we know that a0 and a1 cannot be arbitrary complex numbers, 

but must follow the rule that 

 

|a0|2 + |a1|2 = 1. (4) 

 

All probabilities add up to 1 since it is the sum of the probabilities of the events that could possibly occur in the 

system – there is nothing else that could happen [11]. 

 

2.4 Entanglement 

 

When it is required to represent systems with multiple qubits, tensor products can be used to represent them 

together [12]. For example, in a two-qubit system, where both qubits are |0 , the system can be represented as 

 

|0 ⊗|0 =|00 . 

 

Other states can be represented analogous to this one. Tensor products are also distributive - 

 

|0 ⊗(|0 +|1 )=|00 +|01 . 

 

Tensor products are useful since they provide a mathematical method to repre-sent multi-qubit systems. 

 

Entanglement is a phenomenon that states that two qubits can be intimately linked together, even if they might 

be far apart from each other in the physical sense. Mathematically, entanglement can be expressed in the 

following way. If there is a quantum system in the state 

 

a |00 + b |01 + c |10 + d |11 , 

 

and it cannot be broken down in such a way that 

 

a |00 + b |01 + c |10 + d |11 = |ψ1  |ψ2  , (5) 

 

then the qubits are said to be in an entangled state. Otherwise, if the system can be broken down in the above 

way, then it is said to be in a separable state. It follows from this representation and definition that if the 

coefficients have the property that 

 

ad − bc ̸= 0, (6) 

then the state is entangled; otherwise, it is separable [10]. 

 

The physical consequence of an entangled quantum system is that if one of the qubits is measured, then it is 

possible to know the state of the other qubit without measuring it and disturbing its current state. 

 

2.5 Measurements and Observables 

 

Measurement must be conducted to obtain some result from a quantum op-eration. However, to measure a qubit 

will disturb the system and will force the qubit to collapse into a single state instead of a superposition of 

multiple states. This disturbance of the wavefunction is formally called a “collapse” of the wavefunction. 

 

Suppose you have some quantum state |ψ = a0 |0 + a1 |1 , and you measure it with some |k (k=0,1), the output of 

the measurement will be 
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|ak|2 = | k|ψ |2 

 

= ψ|k  k|ψ 

 

= ψ| Pk |ψ , (7) 

where Pk = |k k| is a projector on |k . This is the collapse of the wavefunction of |ψ , and the state is disturbed 

once it is measured. 

 

An observable is any physical property of a quantum state that can be measured (energy, spin, position, etc.). 

Any observable A can be represented by 

 

A = λk |ek ek| 

 

k 

 

=    λkPk, (8) 

k  

 

where Pk is the projector of |ek , and λk is its corresponding eigenvalue. 

 

2.6 Quantum Gates and Pauli Matrices 

 

As explained previously, measuring qubits will disturb their original states. However, performing a quantum 

operation on it will alter the state of the qubit. An operation is not an observation, however, and the qubit can 

still exist as a nontrivial superposition of states after an operation is performed on. Mathemat-ically, that qubit 

vector will go through a matrix, giving an output in the same vector space. One of the most fundamental 

quantum gates is the Hadamard 

 

(H) gate, that is responsible for opening and closing interference patterns. As a matrix, the Hadamard gate 

is defined as 

 

1 1 1 
H=√ . 

21−1 

 

 

Performing the operation H |0  will give the result 

 

1 

H|0 = √ (|0 +|1 ), 

 

2 

 

and performing H |1  will give the result 

 

1 

H|1 = √ (|0 −|1 ). 

 

 

It turns out, however, that in different bases, there are a lot of different op-erations that can be performed, but at 

the fundamental level, there are four matrices that can perform most operations. These are 1, X, Y, Z - the iden-

tity matrix, and three Pauli matrices. Mathematically, these matrices can be represented as 

1 0 

1=01, 

 

X = 

0 1 

, 1 0 
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Y = 0i −0i , 

 

1 0 

Z=0 −1. 

 

These matrices each have a special function – 1 is the identity matrix (leaves the qubit unchanged), X is the bit-

flip matrix (changes the Boolean value of the bit), Z is the phase-flip matrix (switches the sign of the bit), and Y 

is the phase-bit-flip matrix (switches both the sign and the bit).All these four matrices are unitary and Hermitian, 

and a composition of these fundamental building blocks can be used to engineer arbitrary logical operations 

within a quantum circuit.[11] 

 

2.6.1 Controlled gates 

 

In order to control the operation on a qubit, controlled gates are used to manip-ulate the operation on one qubit 

depending on the control value from another control qubit. Thus, it is necessary for qubits to have gates that 

depend on the quantum state of another qubit. These gates are called controlled gates. The most popular 

controlled gate is the controlled-NOT gate or the CNOT gate. This gate can be decomposed mathematically as 

[11] 

 

c − N OT = |0  0| ⊗ 1 + |1  1| ⊗ X. (9) 

 

In matrix form, the c-NOT gate can be represented by 

 

 

1000 

0 1 0 0  . 

0 0 1 0  

 

0 0 1 

 

0 

     

The basic function of the c-NOT gate is that in the incoming input from the two qubits, if the first qubit is in the 

|0 state, then the second qubit is left the same, and if the first qubit is in the |1 , then the second qubit is bit-

flipped. 

 

All controlled gates can be written in the form of c-U, which is the controlled U-gate, where U is an arbitrary 

single-qubit unitary transformation. 

 

c − U = |0  0| ⊗ 1 + |1  1| ⊗ U. (10) 

 

These gates allow us to work on multi-qubit systems and manipulate them according to our needs. 

 

2.7 Quantum circuits 

Quantum circuits are a compilation of different quantum gates in an order that transforms qubits in the fixed 

order in which they appear. A quantum program overall can be represented by a sequence of quantum circuits 

and non-concurrent classical computation. 

 

A typical visual representation of a quantum circuit consists of a series of lines that depict different qubits 

entering a series of gates and operators and finish with a measurement of the qubits. The most basic quantum 

circuit that involves one qubit is shown below - [11] 

 

 

 

 

Figure 3: Hadamard-phase circuit 
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These gates, along with the four basic Hermitian operators of 1, X, Y , and Z, can be combined in such ways in 

a quantum circuit to perform operations on qubits. 

2.8 Grover’s algorithm 

 

The primary purpose of Grover’s algorithm is to speed up the search of an ele-ment in an unstructured database. 

 

For example, if you are given with a list of N items and you must find the some x = x0 in this list. Classically, 

the worst case scenario would be looking through the entire list and finding x = x0 as the last item, that is, going 

through all N items. On an average, the classical algorithm will have to go through N/2 number of steps to find 

the desired item in the list. [1] 

 

However, the same problem can be solved faster using the Grover’s search al- 

gorithm, which is the quantum mechanical algorithm. Grover’s algorithm will 

√ 

 

take roughly only N number of steps to find the item in an unstructured list, lending a quadratic speedup to the 

process. 

 

The primary idea of the Grover’s algorithm is the usage of an oracle that is designed such that 

U x 

 

=    |x , if x ̸= x0 (11) 

| 

− |x , if x = x0, 

 

   

where |x is an element in the database. 

 

For example, if we have x0 = 10, the oracle matrix can be represented by 

 

 

1000 

Ux0 = 0 1 0 0 

 

, 

 0 0 0 1  

  

0 −1 0 

  

 0 

 

 

      

which essentially ”marks” the item corresponding to x = x0. Next, a diffuser circuit is implemented following 

the oracle that takes the form of 

 

G = 2 |x  x| − 1. (12) 

 

This observable is also called the Grover’s observable as it tends to map the marked item to the desired result. 

At the end of algorithm, the state of the system is altered exactly to x = x0, giving the final result of the search. 

 

III. Methodology 
 

For the following research, quantum and classical systems were required in order to compare the time each of 

them took to find the same result in an unsorted database. 

 

3.1 Quantum simulator 

In order to build the quantum system and its adjoining circuits, the IBM quantum simulator was 

employed. IBM has employed a collection of high-performance simulators to help its users prototype quantum 

algorithms under realistic conditions remotely [13]. As available through the IBM Cloud, IBM Quantum offers 

users with a platform to create and test their quantum circuits and procure data from the same. This is the system 

that was used for the fol-lowing research in order to obtain the data cited in the following section. 

 

The details of the circuit are present in section 9.2. There are three fundamental sections to each algorithm, as is 

visually seen - the first is the initialisation of the algorithm (the init); the second is the oracle; and the third is the 

diffuser that maps the oracle marker onto its corresponding element. 
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For example, taking the circuit in section 9.2.1 that performs a search for |0010 , the init opens the interference 

in the circuit. Then, in the following section of the circuit, the oracle is created of the form 

 

 

1000 

Ux0 = 0 1 0 0 

 

, 

 0 0 0  1  

        

 0 0 1 0 

 

 

    −   

such that the element x0 = 11 is marked in the oracle as the target element to find from the search. Then, the 

diffuser maps this marked oracle onto the element x0 = 11, completing the search. 

 

3.2 Classical simulator 

 

In contrast, to help compare these quantum values against their classical coun-terparts, a Python program was 

written and run on the online platform Repl.it. As opposed to the quantum circuit built on IBM Quantum, this 

Python program performed the same search through an unsorted database in a classical fashion, and the time 

taken for this search to occur was procured and compared against the quantum values. The Python code 

involved in this classical simulation of the Grover’s algorithm is present in section 9.3. 

 

Thus, these two systems were used to procure the data. The algorithm used for the quantum system used 2, 3, 

and 4 qubits, resulting in databases of sizes 22, 23, and 24 - database sizes of 4, 8, and 16. For the classical 

algorithm, these sizes were made and the algorithm was run classically. The data obtained was then tabulated 

and compared. 

 

IV. Results 
The raw data collected from the primary experimentation is cited in section 9.1. 

 

The following data is the processed data from that data. 

 

4.1 Processed Data 

 

In the following subsections, the results of the experiments are compared across the classical and quantum data. 

 

4.1.1 4 item search 

 

Item to Average time taken / s 

find Classical 

 

Quantum  

    

|00 4.0  2.7 

|01 3.7  2.5 

|10 3.7  2.7 

|11 4.5  2.4 

 

Table 1: Comparison between time taken in classical and quantum cases for a search in a 4 item database 

 

4.1.2 8 item search 

Item to Average time taken / s 

find Classical 

 

Quantum  

    

|000 6.9  1.9 

|001 4.0  3.4 

|010 5.5  3.4 



Comparing efficiency of the Grover’s search algorithm against its classical simulator 

DOI: 10.9790/5728-1902025571                            www.iosrjournals.org                                                  63 | Page 

|011 4.2  3.2 

|100 5.1  3.6 

|101 7.3  3.5 

|110 4.8  2.7 

|111 4.7  1.8 

 

Table 2: Comparison between time taken in classical and quantum cases for a search in an 8 item database 

 

4.1.3 16 item search 

 

Item to Average time taken / s 

find Classical 

 

Quantum  

    

|0000 5.4  3.4 

|0001 6.4  2.9 

|0010 6.8  2.6 

|0011 5.8  3.8 

|0100 5.7  3.4 

|0101 5.1  2.8 

|0110 6.9  3.1 

|0111 5.6  2.8 

|1000 5.2  2.9 

|1001 6.0  3.6 

|1010 4.5  2.9 

|1011 4.9  2.7 

|1100 6.0  2.7 

|1101 4.6  3.3 

|1110 5.7  2.9 

|1111 5.8  2.7 

 

Table 3: Comparison between time taken in classical and quantum cases for a search in a 16 item database 

 

4.1.4 Scaling of time taken for quantum and classical algorithms along with size of database 

 

Number of Average time taken / s 

qubits    

 

Classical 

 

Quantum   

    

2 3.9  2.6 

    

3 5.3  2.9 

    

4 5.7  3.0 

    

Table 4: Comparison between time taken in classical and quantum cases for a search against the size of the 

database 

Figures 4 - 7 present the time taken for the classical and quantum algorithms to find a certain item in an unsorted 

list. The quantum times are taken as such from the Processed Data; however, the square root of the classical 

times are taken. This is because the theory predicts that the quantum times will scale with the square root of the 

classical counterparts, so the square root of the classical times are taken to compare how similar the two time 

values are. The average time values for the classical and quantum times are graphed at the end of each graph to 

provide an overall comparison across items. 
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Figure 4: Average time taken for 4 item search 

 

 
Figure 5: Average time taken for 8 item search 

 

 
Figure 6: Average time taken for 16 item search 

 

As seen from Figures 4-6, the square root of the average time values for the clas-sical algorithm are roughly 

around their corresponding quantum times within the range of experimental accuracy. 
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Figure 7: Scaling of time taken for a search through an unstructured database against the size of the database 

 

Figure 7 depicts how the average time values scale with the size of the database. The equations for the trends are 

- 

 

Classicaltrend =⇒ y = 2.5299 ln(x) + 2.2966 (13) 

Quantumtrend =⇒ y = 0.6717 ln(x) + 2.1405 (14) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Extrapolation of trend according to the trend line 

 

 

 

 

 

Figure 8 extrapolates the mathematical trend line observed in 7 across a larger domain and depicts the 

macroscopic relation between the quantum and classical trends. 

 

V. Analysis 
The graphs from the previous section clearly depict the relationship that the classical times and the 

quantum times along with how they scale with the size of the database they are searching in. However, they 

appear to be different from the relationship predicted by the theory - both the graphs seem to be following a 

logarithmic scale from figure 7. This variation from the theoretical prediction could be attributed to the fact that 

the size of the databases were taken to be smaller than is practically implemented - instead of databases with 4, 

8, and 16 items, in practical usage, databases have elements which are of much higher order in magnitude. Thus, 

at a small scale like the experiment, the average times are seen to deviate from the predicted values. 
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An interesting aspect to note from figure 8 is that the scaling of the trend lines at a macroscopic level are shown 

to match the theoretical prediction, how-ever. The quantum trend line is shown to grow at a much slower rate 

than the classical trend line. This relation can also be depicted using the coefficients of the two trend lines - the 

quantum trend has a coefficient of 0.6717, while the classical trend line has a coefficient of 2.5299, showing that 

the quantum trend has a greater time efficiency over its classical counterpart of about 3 times. This depicts the 

speedup of the Grover’s algorithm within the bounds of experimental accuracy [14] [15]. 

 

It can also be observed from the bar plots that while there may be differences between the square root of 

classical times and the quantum times, they average out when looking at the macroscopic trend and follow the 

predicted trend by becoming roughly equal. 

 

The bar plots, however, depict that the square root classical values are con-sistently lesser than the quantum 

times. For example, the time comparisons in the 4 item and 16 item search are consistently skewed in this way. 

This may be attributed to the fact that the algorithm was only run 1024 times for each iter-ation and the fact that 

the size of the database itself in these values were small. If the algorithm was run for a more number of 

iterations, then these inconsis-tencies would have become insignificant. Additionally, if the size of databases 

matched the size that usually found in real-world problems, which are of much larger orders of magnitude, these 

times would tend to be roughly more or less equal than depicted in figures 4-6. 

 

VI. Evaluation and Limitations 
6.1 Strengths 

There were strengths involved in the conduction of the above experiment. Firstly, multiple trials were 

taken across time values for the classical and quantum times to reduce the amount of random error involved in 

the measurements and make them as precise as possible. This allowed accurate and precise results to be 

obtained and thus appropriate conclusions could be drawn with ease. Addi-tionally, each trial on the IBM 

Quantum Composer was taken from a different serve to ensure universality in the measurement of times 

procured. IBM Quan-tum has open source servers located in locations such as Belgium, Nairobi, and Lima, 

among others, and taking a variety of these servers for each trial offered universality to the average time value 

taken. Finally, the R2 value for both the classical and quantum trends, as depicted in figure 7 were fairly high 

and close to 1 (R2 = 0.9375 for the classical trend and R 2 = 0.96 for the quantum trend), showing that the 

measurements obtained were accurate and precise in nature. 

 

6.2 Weaknesses 

 

Despite the strengths of the experiment mentioned above, the experimentation had weaknesses involved as well. 

Firstly, unavailability of a larger and stronger quantum computer made the process of quantum computing 

slower. This kind of computer was unavailable since larger quantum computers typically require much more 

physical space than classical computers and are thus not available for open source usage [16]. If there was 

access to a stronger quantum computer, the quantum algorithm would have been much faster due to the sheer 

strength that the larger computer provides. Additionally, if the classical algorithm was able to perfectly mimic 

the procedure of the quantum algorithm, the comparison be-tween the two would have been fairer, making the 

research outcome closer to the theoretical prediction. However, the classical algorithm was designed in a way 

that it imitated the function of the quantum algorithm and not the algorithm itself. Finally, it is possible that the 

observed trend did not match the trend predicted by theory since the search was not conducted at a large enough 

scale. The theory predicts the Grover’s algorithm to provide a quadratic speedup to its classical counterpart in an 

idealised, large-scale scenario. However, due to the limited scope of this research and the unfeasible nature of 

building larger databases to search through them, this was unable to be done. 

 

VII. Conclusion 
The above research and measurements do not align with the theoretical predic-tion put forth by 

Grover’s search algorithm [1]. This difference can be attributed to the low scale at which the research was 

conducted - the theoretical relation stems from larger sizes of databases. The measurements obtained in the re-

search do not follow the predicted quadratic speedup offered by the Grover’s search algorithm. However, the 

comparison between the quantum and classical trends depict some degree of speedup for the quantum trend, 

showing that the quantum algorithm is indeed faster than its classical counterpart. 
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VIII. Appendix 
8.1 Raw Data 

 

8.1.1 4 item search 

 

Table 5 shows the results of the time taken from the 4 item search in the IBM Quantum Composer. A circuit 

was made that created an oracle and helped each item to be found onto a state where it existed on its own. 

 

 

Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|00 2.7  2.4  3.1 

|01 3.3  2.1  2.0 

|10 2.6  2.6  3.0 

|11 2.4  2.6  2.4 

 

Table 5: Quantum time taken for search in a 4 item database 

 

Table 6 shows the results of the time taken for the execution of the 4 item search in Repl.it. A classical 

algorithm was made to sort through an unstructured database of 4 items and output the time required to find that 

item. 

 

Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|00 5.3  2.8  3.8 

|01 3.6  3.7  3.7 

|10 3.6  3.9  3.5 

|11 5.7  3.8  3.9 

 

Table 6: Classical time taken for search in a 4 item database 

 

8.1.2 8 item search 

Table 7 shows the results of the time taken from the 8 item search in the IBM Quantum Composer. 

 

Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|000 1.5  1.1  3.2 

|001 3.4  3.1  3.6 

|010 3.3  3.0  3.9 

|011 3.2  2.8  3.6 

|100 3.2  4.0  3.5 

|101 3.6  3.3  3.5 

|110 1.0  3.7  3.5 

|111 2.4  2.6  2.4 

 

Table 7: Quantum time taken for search in an 8 item database 

 

Table 8 shows the results of the time taken for the execution of the 8 item search in Repl.it. 
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Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|000 4.4  4.2  12.2 

|001 4.4  3.7  4.0 

|010 6.8  6.9  2.9 

|011 5.3  3.6  3.8 

|100 4.4  7.0  4.0 

|101 12.2  5.2  4.6 

|110 7.1  3.6  3.7 

|111 3.4  5.4  5.3 

 

Table 8: Classical time taken for search in an 8 item database 

 

8.1.3 16 item search 

 

Table 9 shows the results of the time taken from the 16 item search in the IBM Quantum Composer. 

 

Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|0000 2.7  4.6  3.0 

|0001 2.8  2.8  3.1 

|0010 2.6  2.4  2.9 

|0011 2.7  3.0  5.6 

|0100 4.6  2.7  2.9 

|0101 2.8  2.9  2.7 

|0110 2.9  3.1  3.4 

|0111 2.8  2.8  2.9 

|1000 3.0  2.8  2.8 

|1001 3.0  5.0  2.9 

|1010 2.9  2.7  3.0 

|1011 2.7  2.6  2.7 

|1100 2.7  2.7  2.7 

|1101 4.6  2.7  2.7 

|1110 3.1  2.9  2.8 

|1111 2.7  2.7  2.8 

 

Table 9: Quantum time taken for search in a 16 item database 

 

Table 10 shows the results of the time taken for the execution of the 16 item search in Repl.it. 

 

Item to Time taken / s 

find Trial 1 

 

Trial 2 

 

Trial 3   

      

|0000 5.6  4.9  5.6 

|0001 8.0  5.6  5.6 

|0010 5.1  9.4  5.9 

|0011 6.9  5.5  5.0 

|0100 7.0  5.0  5.0 

|0101 5.1  5.9  4.4 

|0110 5.9  5.4  9.3 

|0111 5.0  5.0  6.7 
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|1000 5.3  5.7  4.7 

|1001 4.7  5.0  8.4 

|1010 4.7  4.5  4.4 

|1011 4.8  5.0  5.0 

|1100 7.8  5.2  5.1 

|1101 4.7  4.6  4.5 

|1110 6.6  5.0  5.4 

|1111 5.7  6.1  5.5 

 

Table 10: Classical time taken for search in a 16 item database 

 

8.2 Quantum circuits for Grover’s algorithm 

 

8.2.1 Grover’s search for |11 

 

[17] 

 

 

 

 

 

 

 

 

 

Figure 9: Grover’s search for |11 

 

8.2.2 Grover’s search for |100 

 

[18] 

 

 

 

 

 

 

 

Figure 10: Grover’s search for |100 

 

8.2.3 Grover’s search for |0010 

 

[18] 

 

 

 

 

 

 

 

 

Figure 11: Grover’s search for |0010 
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8.3 Python code for classical simulator of Grover’s algo-rithm on Repl.it 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Python code for classical simulator of Grover’s algorithm 

 

The logic of the above algorithm revolves around the search function that takes an unsorted list and a 

number to find in that list as input. The function then goes through that list and returns the value 1 when the 

element is found in that list. The main function receives this confirmation and records the time taken for that 

element to be found from the unsorted list. This forms the essence of the classical simulation of the Grover’s 

algorithm. 
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