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Abstract 
A two-dimensional natural convection flow of a viscous incompressible and electrically conducting fluid past a 

vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing 

equations are reduced to ordinary differential equations by introducing appropriate coordinate 

transformations. We have solved that ordinary differential equations and we have shown the velocity profiles, 

temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr), Hartmann 

number (M) and Prandtl number(Pr) on velocity profiles and temperature profiles are shown graphically. 
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I. Introduction 
The flow of an electrically conducting viscous fluid in presence of transversely applied  magnetic field 

has applications in many devices such as magneto hydrodynamic (MHD) power generators, MHD pumps, 

accelerators, aero dynamics, heating, electrostatic precepitation, polymar technology, petrolium 

industry.Hartmann flow of a Newtonian fluid with heat transfer subject to different physical effects, have been 

studied by any authors. 

Studies of forced, free and mixed convection flow of a viscous incompressible fluid, in the absence of 

magnetic field, along a vertical surface have been considered by Sparrow and Gregg, Merkin, Loyed and 

Sparrow. Hunt and Wilks introduced a group of continuous transformations computation for the boundary layer 

equations between the similarity regimes for mixed convection flow. In the case of similarity regimes Hunt and 

Wilks recognized
2Re

(
x

xGr
 , where xGr is the local Grashof number and xRe is the local Reynolds number), 

a governing parameter for the flow from a vertical plate. Forced convection exists as when  goes to zero, 

which occurs at the leading edge, and the free convection limit, can be reached at large values of 

 .Perturbation solutions have been developed in both the cases, since both the forced convection and free 

convection limits admit similarity solution. Empirical patching of two perturbation solutions have also been 

carried out to provide a uniformly valid solution by Raju et at which covers the whole range of the values of  . 

They obtained a finite difference solution applying an algebraic transformation 21
1


Z . 

Considering the free convection as a perturbation quantity has developed many solutions. Tingwiet 

have also studied the effect of forced and free convection along a vertical flat plate with uniform heat flux by 

considering that the buoyancy parameter p  to be 
2

5

Re x

xGr
  The solutions were obtained for the small buoyancy 

parameter taking into the account of the perturbation technique. Because of its application for MHD natural 
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convection flow in the nuclear engineering where convection aids the cooling of reactors, the natural convection 

boundary layer flow of an electrically conducting fluid up a hot vertical wall in the presence of strong magnetic 

field has been studied by several authors, such as Sparrow and Cess, Reley and Kuiken. Simultaneous 

occurrence of buoyancy and magnetic field forces in the flow of an electrically conducting fluid up a hot 

vertical flat plate in the presence of a strong cross magnetic field was studied by Sing and Cowling who had 

shown that regardless of strength of applied magnetic field there will always be a region in the neighborhood of 

the leading edge of the plate where electromagnetic forces are unimportant. Crammer and Pai presented a 

similarity solution for the above problem with uniform heat flux by formulating it in terms of both a regular and 

inverse series expansions of characterizing coordinate that provided a link between the similarity states closed 

to and far from the leading edge. Hossain and Ahmed studied the combined effect of the free and forced 

convection with uniform heat flux in the presence of strong magnetic field. Hossain et al also investigated the 

MHD free convection flow along a vertical porous flat plate with a power law surface temperature in the 

presence of a variable transverse magnetic field employing two different methods namely (i) perturbation 

methods for small and large values of the scaled stream-wise transpiration velocity 

variable )2((
,

0



vU

xVs  where 0V  is the transpiration velocity) and (ii) the finite difference together 

with the Keller box method. Wilks recognized a parameter ,  defined by 
 















TTg

x
H

0

2
2

0






  to 

investigate the MHD free convection flow about a semi-infinite vertical plate in a strong cross magnetic field. 

The work of that follows reformulates the problem in terms of coordinates expansions with respect to a non-

dimensional characteristic length which is fundamental to the problem in its reflection to the relative 

magnitudes of buoyancy and magnetic forces at varying locations along the plate. A step by step numerical 

solution has been obtained to supplement the series solutions for small and large . 

In the above analysis, the solutions for the problem, Wilks used only series solutions method. But here 

the governing equations are reduced to ordinary differential equations by introducing appropriate coordinate 

transformations. We have  solved the ordinary differential equations and found the velocity profiles, the 

temperature profile, and the skin friction and nusselt number. The effects of Grashof number (Gr), Hartmann 

number (M) and Prandtl number (Pr) on velocity profiles and temperature profiles are shown graphically. 

 

The Governing Equations 

The Governing equations for free convection flow of a viscous incompressible and electrically 

conducting fluid with viscosity depending temperature 

 

 
Figure 1.1 

 

 

The flow configuration and coordinates system. 

are as given below 
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MHD Flow Of Viscous Incompressible Fluid along A Vertical Surface 

DOI: 10.9790/0661-2001035359                            www.iosrjournals.org                                                  55 | Page  

 


 



















uH
TTg

y

u

y

u
v

x

u
u

2

0

2

2

                              (1.2) 

2

2

y

T

c

k

y

T
v

x

T
u

p 














                                            (1.3) 

where, 

vu, is the velocity components associated with the direction of increase of coordinates x and y measured 

along and normal to the vertical plate. 

T is the temperature of the fluid in the boundary layer, 

g  is the acceleration due to gravity, 

 is the coefficient of thermal expansion, 

k  is the thermal conductivity, 

 is the density of the fluid, 

pc  is the specific heat at constant pressure and 

T  is the temperature of the ambient fluid and 

v is the kinematics viscosity of the fluid. 

For this flow we consider the following  boundary conditions: 
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From the continuity equation (1.1) we consider the velocity normal to the plate is of the form 0Vv  . 

Now we introduce the following transformations 
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Applying the above transformation,we get 

 (1.5) 
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Boundary conditions (4.5) reduces to 
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                                           (1.8) 

 

II. Result 
The equations (1.6) and (1.7) with the boundary condition (1.8) are simply ordinary differential 

equation. We can find the solution of that equation (1.6) and (1.7) respectively; 
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)Prexp( Y                                                     (1.10) 

We also find the skin friction and the rate of heat transfer as follows: 
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III. Discussion 
In this section we discuss the results obtained from the solution of the equations governing for  the 

MHD free convection flow of a viscous incompressible and electrically conducting fluid with uniform viscosity 

and uniform thermal conductivity, in the presence of uniform transverse magnetic field along an impermeable 

vertical flat plate. For the solutions of the governing non-similar equations, a group of transformations is used to 

get a group of ordinary differential equations. Here we consider the low Prandl number (Pr) for liquid metals. 

We have pursued solutions for Pr equals 92.0 for ammonia, 72.0 for air, 05.0 for lithium and 004.0 for 

sodium at c0649 . 

We have calculated the skin friction and the rate of heat transfer in the equation no. (1.11) and (1.12). 

For increasing values of Prandtl number, the local skin friction decreases monotonically .The skin friction 

increase at the decreasing values of the magnetic field parameter, and increasing values of Grashof numberThe 

velocity profiles for ,15,10,5,1Gr ,15,10,5,1 Gr ,5,4,3,2M  

,5,4,3,2 M 05.0,72.0,92.0Pr   and 004.0 are depcited in the figures from Fig.1.2 to 

Fig.1.5. In the Fig. 1.2(a), 1.2( b) the velocity profiles for 72.0Pr   and with 15,10,5,1Gr and 

15,10,5,1 Gr are plotted. Here we see that the velocity profile increases with the increasing values of 

Grashof number (Gr). These effects are significant near the surface of the plate. In the downstream region these 

profiles go to a limiting point. 
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In the Fig.1.3(a) and Fig.1.3(b), the velocity profiles for 72.0Pr   and 5,4,3,2M with 

5,5 Gr are plotted. These velocity profile increases with the increasing values of magnetic field parameter 

( M ). We see that for 1Y these effect is significant and for large values of Y these profiles go to a limiting 

point. 

The velocity profiles for 5Gr  and 5M are shown in the Fig. 1. 4(a), 1. 4(b) for Pr equals 

92.0 for ammonia, 72.0 for air, 05.0 for lithium and 004.0 for sodium at c0649 . Again the temperature 

profiles for 5Gr  and 5M are shown in the Fig.4.5 for 72.0,05.0,004.0Pr  and 92.0 . Here for 

increasing values of Pr , the velocity profiles as well as temperature profiles decreases. In the upstream regime 

the effect of Pr on the velocity profiles is not remarkable. The velocity profile and temperature profiles that we 

obtained is similar to that of Wilks. The effects of different Pr are significant near the surface of the plate. 

 

IV. Conclusion 
The MHD flow and heat transfer of conducting fluid under the influence of an applied magnetic field 

have been studied in this chapter.  The local non-similarity equations governing the flow for the case of uniform 

viscosity and thermal conductivity are developed. The numerical computations were carried out only for the 

case of assisting flow for the fluids having low Prandtl number appropriate for liquid metals( Pr 92.0 for 

ammonia, 72.0 for air, 05.0 for lithium and 004.0 for sodium at c0649 ).The results thus we obtained for 

skin friction and the rate of heat transfer coefficient are presented in tabular form in the case of different 

properties of the liquid metals. The velocity profiles and the thermal conductivity profiles are given graphically 

in the case of constant viscosity. Finally, following conclusion drawn throughout present investigations: 

i. For increasing values of Prandtl number, the local skin friction decreases monotonically. 

ii. The skin friction increase at the decreasing values of the magnetic field parameter, M and increasing 

values of Grashof number Gr . 

iii. Profiles for the velocity as well as the thermal conductivity decrease due to the increasing values of the 

Prandtl number, Pr . 

 

 
Fig.1.2(a) 

Velocity profiles for different values of Gr  with 72.0Pr  and 5.1M  
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Fig.1.2(b) 

Velocity profiles for different values of Gr  with 72.0Pr  and 5.1M  

 

 
Fig.1.3(a) 

Velocity profile for different values of M  with 72.0Pr  and 5Gr  
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