
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 20, Issue 3, Ser. 2 (May. – June. 2024), PP 27-37 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2003022737                            www.iosrjournals.org                                                  27 | Page  

A Model-Independent Upper Bound For The Price Of 

Swiss Re Mortality Bond 2003 Through Lagrangian 

Optimization Technique 
 

Raj Kumari Bahl1 
1(Department Of Statistics, Ramjas College, University Of Delhi, India) 

 

Abstract:  
The use of Catastrophic Mortality (CATM) Bonds (CMBs) as an alternative risk transfer (ART) mechanism is 

well established in the insurance and reinsurance fields. However pricing of these bonds is a complex problem 

and no closed form solution can be found in the existing literature. In this paper, we introduce an interesting 

model-independent upper bound for the price of the Swiss Re Mortality Bond 2003 by employing Lagrangian 

Optimization Technique. Swiss Re mortality bond was indeed the first catastrophic mortality bond to be 

launched in the insurance market. The bond mechanism relies upon the behaviour of a well-defined mortality 

index to generate pay-off for bondholders.  We employ the methodology of expressing the pay-off of such a bond 

in terms of the pay-off of an Asian put option in a manner similar to Bahl and Sabanis (2021) and present an 

efficient model-independent upper bound. We carry out Monte Carlo simulations to compute the bond price and 

illustrate the quality of the bound for a variety of models. 
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I. Introduction  
 The modern day world boasts of a very amicable living that has indeed been achieved through massive 

technological development. However everything comes at a cost. Mankind has been brutal with the earth's 

ecosystem battering the nature's equilibrium, disturbing the food chain, causing global warming and altering the 

weather. All this has taken a toll on the natural defense system of the earth thereby inviting natural disasters. 

These disasters, pandemics, wars, terrorism attacks and industrial accidents bring along their share of adversities 

for the individuals who face them as well as for the insurance companies who end up burning a hole in their 

balance sheets paying the huge claims that arise due to these events. The most serious fall out of these incidents 

is the loss of human lives. This is termed as ``mortality risk", i.e., the risk of dying earlier than expected or 

having a shorter life time than anticipated of an individual or group of individuals.  

 More explicitly, life insurance companies provide protection to their policyholders in the form of a pay-

out made in the event of a policyholder's death, in exchange for a premium. Extreme mortality events, such as a 

severe pandemic or a natural catastrophe or a large terrorist attack, could result in a life insurance company 

needing to make sudden pay-outs to many policyholders. This large pay-out would be exacerbated in that the 

investment portfolio would not yet have delivered sufficient returns so that the pay-outs to policyholders are 

made sooner than expected. Therefore it is crucial for life insurers, and life re-insurers, to manage their exposure 

to extreme mortality risks where insurance portfolio diversification by itself is insufficient.  

 The International Actuarial Association defines four components of longevity/mortality risk viz. level, 

trend, volatility and catastrophe. The four components are classified into two groups which are systematic risk 

and specific risk or idiosyncratic risk (c.f. Crawford et al. (2008)). Systematic risk is defined as the 

underestimation or overestimation of the base assumption of mortality rates, including the level component and 

the trend component. Specific risk is taken to be the volatility around the base assumption, including the 

volatility component and the catastrophe component. According to the famous law of large numbers in 

Statistics, specific risks can be minimized by diversifying with a large pool of lives; however it is not possible to 

reduce systematic risk by diversification. 

As a result alternative methodologies have to be adopted to circumvent such risks. We look at the 

available methodologies to tackle mortality risk in the next section. Section 3 throws light on various CMB 

transactions. Section 4 unravels the design of the Swiss Re Bond. Section 5 presents the foundation of this paper 

i.e., the pay-off of the Swiss Re Mortality bond in terms of an Asian put option. Section 6 portrays the put-call 

parity for this bond. Section 7 presents the focus of this paper i.e. deriving an upper bond for the price of Swiss 
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Re Bond by using Lagrangian optimization. Section 8 showcases numerical results. Section 9 then concludes 

this article. 

 

II. Taming The CAT  
When a fire breaks out in a city, there needs to be a prompt fire-fighting response to contain the fire 

and prevent it from spreading. The outbreak of a major fire is the wrong time to hold discussions on the pay of 

fire-fighters, to raise money for improving the fire service or to consider fire insurance. It is too late in the day to 

do all that.  

Just like fire, infectious diseases also spread at an exponential rate. On March 21, 2014, an outbreak of 

Ebola was confirmed in Guinea. In April, the World Health Organization (WHO) declared that it would cost a 

modest sum of $5 million to control the disease. In July this cost of control touched $100 million and by 

October it had ballooned to $1 billion. Ebola acted both as a serial killer and loan shark. If money in not made 

available readily enough to deal with the outbreak of an epidemic, its magnitude and intensity may go out of 

hand. However in general this scenario has been repeating itself with many pandemics, the latest being COVID-

19 which has broken all records and the largest casualty is the insurance business. 

Several possibilities exist relating to the risk reduction arising from catastrophes. A good reference in 

this direction is Huynh et al. (2013). We list below the possible remedies employed by insurers and re-insurers 

to safeguard themselves from the calamity of increased claims caused due to a catastrophe and then discuss a 

few of them in detail with the first one being the most important in the context of this article.  

• Catastrophic or Extreme Mortality Bonds 

• Risk Transfer Mechanisms such as reinsurance or retrocession1 

• Self-insuring or retaining the risk through holding greater levels of capital2 

• Natural Hedging by balancing mortality risk with longevity risk 

• Diversification along other lines of businesses 

While the first method is a recent innovation, the others are traditional methods of risk mitigation. We 

will discuss the first one in detail in the next section. In particular, reinsurance or retrocession has been the most 

popular method of offloading the risk. This consists in transferring the risk from a smaller and less diversified 

insurer to a larger re-insurer with a more diversified portfolio. However, the ceding party ultimately lands up 

with the same risk it seeks to transfer, via the credit risk of the counter party re-insurer. This is due to the 

inherent possibility of reinsurer and retrocessionaire defaulting when faced with widespread catastrophic losses 

such as in a pandemic. Reinsurance is essentially pure mortality risk business, and the usual advantage conferred 

by re-insurers' geographical diversification is significantly lost in the event of a pandemic (APRA(2007); Dreyer 

et al.(2007); Cummins and Trainar (2009)) since an influenza pandemic is likely to affect multiple geographical 

regions around the world as seen during COVID-19, compared, for example, to a single earthquake. In other 

words, while trying to eliminate mortality risk, credit risk comes into the picture. Thus the capacity of 

reinsurance is rather limited. An alternative to reinsurance are catastrophic mortality bonds which are “zero-beta 

assets”, which essentially eradicate credit risk. These catastrophic-mortality securitization instruments offer 

several advantages and disadvantages compared to reinsurance and are described in the next section.  

               

III. Catastrophic Mortality Bonds (CMBs) 
              As mentioned above catastrophic mortality bonds offer mortality securitization. Securitization consists 

in the isolation of a pool of assets or rights to a set of cash flows and the repackaging of the assets or cash flows 

into securities that are traded in the capital markets (c.f. Cowley and Cummins (2005)). Insurance-linked 

securities (ILS) are instruments designed to transfer insurance risk to the capital markets (c.f. Cummins and 

Trainar (2009)). Life securitizations have been predominantly used as a financing tool although some have 

facilitated risk management. On the other hand, non-life securitizations such as earthquake bonds and wind-

storm bonds have typically been used to transfer extreme risk arising due to a catastrophic event into the capital 

markets for a number of years (c.f. Ernst and Young (2011)). 

            The market for ILS has grown significantly in recent years, expanding at 40-50% per year since 1997 

(Hartwig et al. (2008)). Since extreme mortality can be modelled in the same way as other catastrophic risks 

(see Johnson (2013)), it has become another of many offerings in a menu of perils from which investors choose 

and mix. To the end of 2023, there have been sixteen public catastrophic mortality bonds transactions with a 

total bond issuance value of approximately U.S. $3.5 billion, with the last issue being that of VITA VI in July 

2021 by Swiss Re. In fact Swiss Re was the pioneer to launch the first catastrophic mortality bond VITA I in 

 
1 Reinsurance refers to the insurance purchased by an insurer from a re-insurer to transfer risk. Retrocession refers to the 

purchase of insurance by re-insurers from other reinsurance companies to transfer risk (Bellis et al. (2010)). 
2 c.f. Baumgart et al. (2007) 
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December 2003 which was extremely successful. The reinsurance giant has undoubtedly dominated the market 

in this sector and has experimented even with a ‘Longevity Trend Bond’ called ‘Kortis’ in 2010 and a ‘Multiple 

Peril Bond’ called ‘Mythen Re’ in 2012 which was a hybrid of a hurricane and a mortality bond. Table 1 

summarizes all the catastrophic mortality bonds issued in the pre-COVID-19 era.  Only two mortality bonds 

have been launched after the outbreak of COVID, viz. La Vie Re by Minnesota LIC in October 2020 and VITA 

VI by Swiss Re in July 2021. 

             In this table the fourth column represents the maturity of the various tranches, where tranches are parts 

of a security that can be broken apart and sold in pieces. Catastrophic mortality bonds have primarily appealed 

to huge, globally diversified insurers and re-insurers, and have predominantly been used in developed countries. 

Undoubtedly, these bonds enhance the capacity of the life insurance industry to write mortality risk business by 

transferring catastrophic losses from the insurance industry to the capital markets (Lin and Cox (2008); 

Bouriaux and MacMinn (2009)). 

 

Table no 5: Summary of Catastrophic Mortality Bond Transactions 

Year 

Special 

Purpose 
Vehicle 

Sponsor 
Matur

ity 

 

 
Principal 

Amount 

(Millions) 
 

 

 

S & P 

Rating 
at 

Issuance 

 

Initial 

Spread 

to 3-
Month 

LIBOR/ 

EURIB
OR 

(bps) 

Attachment/ 

Exhaustion Point 
(%) 

 

 

Covered Area 

 

2003 Vita Capital I Swiss Re 4 U.S. $400 A+ 135 130/150 

U.S. 70%, U.K. 

15%, France 
7.5%, Italy 5% 

and Switzerland 

2.5% 

2006 Vita Capital II Swiss Re 

5 

5 
5 

U.S. $62 

U.S. $200 
U.S. $100 

A- 

BBB+ 

BBB- 

90 

140 
140 

120/125 

115/120 
110/115 

U.S. 62.5%, 

U.K. 17.5%, 

Germany 7.5%, 
Japan  7.5% and 

Canada 5% 

2006 Tartan Capital Swiss Re 
3 
3 

U.S. $753 
AAA 
BBB+ 

19 
300 

115/120 
110/115 

U.S. 100% 

2006 Osiris Capital Swiss Re 

4 

4 

4 
4 

EUR 1003 

EUR 50 

U.S. $150 
U.S. $100 

AAA 

A- 

BBB 
BB+ 

20 

120 

285 
500 

114/119 

114/119 

110/114 
106/110 

France 60%, 
Japan 25%, and 

U.S. 15% 

2006 
Vita Capital 

III 
Swiss Re 

4 

4 
4 

4 

4 
5 

5 

5 
5 

U.S. $1003 

U.S. $1003 

U.S. $90 

EUR 30 

EUR 553 

U.S. $1003,4 

EUR 55 

U.S. $503 

U.S. $50 

AAA 

AAA 
A 

A 

AAA 
AAA 

AA- 

AAA 
A 

21 

21 
110 

110 

22 
20 

80 

21 
112 

125/45 

125/145 
120/125 

120/125 

120/125 
125/145 

125/145 

120/125 
120/125 

U.S. 62.5%, 

U.K. 17.5%, 

Germany 7.5%, 
Japan 7.5\% and 

Canada 5% 

2008 Nathan 
Munich 

Re 
5 U.S. $100 A- 135 120/130 

U.S. 45%, U.K. 

25%, Canada 

25% and 
Germany 5% 

2009 to 

2011 

Vita Capital 

IV 
Swiss Re 

5 

 

4 
 

5 

 
5 

 

5 
 

5 

U.S. $75 

 

U.S.$50 
 

U.S. $100 

 
U.S.$75 

 

U.S. $100 
 

U.S.$80 

BB+ 

 

BB+ 

 

BB+ 

 

BB+ 

 

BBB- 
 

BB+ 

650 

 

525 
 

375 

 
370 

 

N/A 
 

N/A 

U.K. 112.5/120 & 

U.S. 105/110 
U.K. 112.5/120 & 

U.S. 105/110 

Japan 107.5/115 
& U.S. 105/110 

Canada 111.5/120 

& Germany 
110/115 

Canada 120/130 & 

Germany 125/135 
Canada/ Germany 

110/115, U.K. 

115/120 and U.S. 
105/110 

U.K. and U.S. 

 
U.K. and U.S. 

 

Japan and U.S. 
 

Canada; 

Germany 
 

Canada; 

Germany 
 

Canada; 

Germany U.K. 
and U.S. 

 
3 These tranches have been credit enhanced by “monoline” insurers who guarantee the interest and principal payment. 
4 Property Claim Services 
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2012 

Vita Capital V 

D-1 

 
E-1 

Swiss Re 
5 
 

5 

U.S.$125 
 

U.S.$150 

BB- 
 

BB+ 

97 
 

97 

Australia 135 & 

Canada 120 
Australia 120, 

Canada 110 & 

U.S. 105 

Australia & 

Canada 
 

Australia, 

Canada & U.S. 

2012 

Mythen Re 
U.S. 

Hurricane 

U.K. Mortality 

Swiss Re 

4 

 
5 

U.S. $120 

 
U.S. $80 

B+ 

 

B- 

 

8.50% 

 
11.75% 

U.S. PCS4 

620.2/845.5 

& U.K. 125/135 
U.S.PCS 

372.7/511.4 

U.S. & U.K. 

 
U.S. 

2013 Atlas IX SCOR Re 5 U.S.$180 BB 3.25% 102/104 U.S. 

2015 

Benu Capital 

Excess 

Mortality 

AXA 
5 
5 

EUR 135 
EUR 150 

BB+ (sf) 
BB (sf) 

2.55% 
3.35% 

France 116/152.5 

Japan 116/140.8 

& U.S. 108/120.4 

Drop Down 
Level 

France 110%, 

Japan 110% & 
U.S. 106% 

 

2015 

Vita Capital 

VI 
Swiss Re 5 U.S. $100 BB (sf) 2.90% 

Australia 120, 

Canada 115 & 

U.K. 120 

Australia, 

Canada & U.K. 

2020 La Vie Re 
Wills Re 

Securities 
3 U.S. $100 NR 2.85% 110 U.S. 

2021 
Vita Capital 
VI (Series 

2021-1) 

Swiss Re 4 U.S. $120 NR 3% 106/116 
Australia, 

Canada, U.K. & 

U.S. 

 

IV. Design Of The Swiss Re Bond 
                   As pointed out in the introduction, the financial capacity of the life insurance industry to pay 

catastrophic death losses from natural or man-made disasters is limited. To increase its capacity to pay 

catastrophic mortality losses, Swiss Re obtained about 400 million in coverage from institutional investors in 

lieu of its first pure mortality security. The reinsurance giant issued a three year bond in December 2003 with 

maturity on January 1, 2007. To carry out the transaction, Swiss Re set up a special purpose vehicle (SPV) 

called Vita Capital Ltd. This enabled the corresponding cash flows to be kept off Swiss Re's balance sheet. The 

principal is subject to mortality risk which is defined in terms of an index 𝑞𝑡𝑖  in the year 𝑡𝑖. This mortality index 

was constructed as a weighted average of mortality rates (deaths per 100,000) over age, sex (male 65% and 

female 35%) and nationality (US 70%, UK 15%, France 7.5%, Italy 5% and Switzerland 2.5%) and is given 

below. 

 

                                               𝑞𝑡𝑖

=∑𝐶𝑗
𝑗

∑𝐴𝑘
𝑘

(𝐺𝑚𝑞𝑘,𝑗,𝑡𝑖
𝑚 + 𝐺𝑓𝑞𝑘,𝑗,𝑡𝑖

𝑓
)                                                                            (4.1) 

                                                                                                                                  

where 𝑞𝑘,𝑗,𝑡𝑖
𝑚  and 𝑞𝑘,𝑗,𝑡𝑖

𝑓
 are the respective mortality rates (deaths per 100,000) for males and females in 

the age group k for country j, 𝐶𝑗  is the weight attached to country j, 𝐴𝑘 is the weight attributed to age group k 

(same for males and females) and 𝐺𝑚 and 𝐺𝑓 are the gender weights applied to males and females respectively. 

 The Swiss Re bond was a principal-at-risk bond. If the index 𝑞𝑡𝑖  (𝑡𝑖 = 2004, 2005 or 2006 for i=1, 2, 3 

respectively) exceeds 𝐾1 of the actual 2002 level, 𝑞0, then the investors will have a reduced principal payment. 

The following equation describes the principal loss percentage, in the year 𝑡𝑖: 
 

                                                                   𝐿𝑖 =

{
 

 
0                           if  𝑞𝑡𝑖 ≤ 𝐾1𝑞0                            

(𝑞𝑡𝑖
−𝐾1𝑞0)

(𝐾2−𝐾1)𝑞0
            if 𝐾1𝑞0 ≤ 𝑞𝑡𝑖 ≤ 𝐾2𝑞0             

1                            if   𝑞𝑡𝑖 ≥ 𝐾2𝑞0                         

                                         (4.2) 

 

In particular, for the case of Swiss Re Bond, 𝐾1=1.3 and 𝐾2=1.5. In lieu of having their principal at 

risk, investors received quarterly coupons equal to the three-month U.S. LIBOR plus 135 basis points. There 

were 12 coupons in all with a coupon value of 

                                                                   𝐶𝑂𝑗 =

{

 

(
𝑆𝑃+𝐿𝐼𝑗

4
) . 𝐶                   if 𝑗 =

1

4
,
2

4
, … ,

11

4
           

(
𝑆𝑃+𝐿𝐼𝑗

4
) . 𝐶 + 𝑋𝑇       if   𝑗 = 3                         

                                         (4.3) 
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where SP is the spread value which is 1.35%, 𝐿𝐼𝑗  are the LIBOR rates, C=$400 million, 𝑇 = 𝑡3 and 𝑋𝑇 

is a random variable representing the proportion of the principal returned to the bondholders on the maturity 

date such that 

                                                                 𝑋𝑇

= 𝐶 (1 −∑𝐿𝑖

3

𝑖=1

)

+

,                                                                                            (4.4)   

where ∑ 𝐿𝑖
3
𝑖=1  is the aggregate loss ratio at 𝑡3. However, there was no catastrophe during the term of 

the bond. The discounted cash flow (DC) of payments is given by 

                                                              DC(r)

= ∑

 𝐶𝑂𝑖
4

(1 +
𝑟
4
)
𝑖

12

𝑖=1

  ,                                                                                          (4.5)   

where r is the nominal annual interest rate.  

         

                      Further define 

 𝑌𝑇 = −∫ 𝜌(𝑡)𝑑𝑡
𝑇

0

                                                 

where 𝜌(𝑡) is the US LIBOR at time t. As a result, the risk-neutral value at time 0 of the random 

principal returned at the termination of the bond is 

𝑃 = E𝑄[𝑒
−𝑌𝑇𝑋𝑇]                                                    

where Q is the risk-neutral measure. However, under the assumption of independence of 𝑌𝑇 and 𝑋𝑇, this reduces 

to 

       𝑃 = E𝑄[𝑒
−𝑌𝑇]E𝑄[𝑋𝑇].                                                    

The conditions under which it is possible (or not) to transfer the independence assumption from the 

physical world measure ℙ to Q have been discussed extensively in Dhaene et al. (2013). Henceforth, in this 

incomplete market, we choose to price under a risk neutral measure that preserves independence between 

market and mortality risks. In order to proceed, we represent E𝑄[𝑒
−𝑌𝑇] as 𝑒−𝑟𝑇, which implies 

                                                              𝑃
= 𝑒−𝑟𝑇E𝑄[𝑋𝑇]                                                                                                         (4.6)     

where r is the risk-free rate of interest. In subsequent writing, we drop Q from the above expression.  

 

V. The Principal Pay-Off Of Swiss Re Bond As That Of An Asian-Type Put Option 

In the same spirit as Bahl and Sabanis (2021), we can write 𝑋𝑇 given in equation (4.4) in a more 

compact form similar to the pay-off of the Asian put option as shown below: 

                                                          𝑋𝑇

= 𝐷 (𝑞0 −∑5(𝑞𝑡𝑖 − 1.3𝑞0)
+

3

𝑖=1

)

+

                                                                        (5.1)   

with 

                                                                                                𝐷 =
𝐶 

𝑞0
                                                                                           (5.2)   

and the strike price equal to 𝑞0. For the sake of simplicity, we use 𝑞𝑖  in place of 𝑞𝑡𝑖  and define 

                                                                        𝑆𝑖
= 5(𝑞𝑖 − 1.3𝑞0)

+                                                                                          (5.3)   
and 

                                                                                         𝑆

= ∑𝑆𝑖

3

𝑖=1

                                                                                         (5.4) 

Using equations (5.3)-(5.4) in equation (5.1) and plugging the result into equation (4.6), we have: 

                                                                     𝑃
= 𝐷𝑒−𝑟𝑇𝐸[(𝑞0 − 𝑆)

+]                                                                                      (5.5)   
It is naturally assumed that the inequalities 𝑆 ≥ 𝑞0 almost surely (a.s.) and 𝑆 ≤ 𝑞0 a.s. do not hold, 

otherwise the problem has a trivial solution. This means that 𝑞0 ∈ (𝐹𝑆
−1+(0), 𝐹𝑆

−1(1)) , where as in Dhaene et al. 

(2002), 𝐹𝑋
−1 is the generalized inverse of the cumulative distribution function (c.d.f.), i.e., 



A Model-Independent Upper Bound For The Price Of Swiss Re Mortality Bond 2003……. 

DOI: 10.9790/0661-2003022737                            www.iosrjournals.org                                                  32 | Page  

                                                     𝐹𝑋
−1 = inf{𝑥 ∈ ℝ|𝐹𝑋(𝑥) ≥ 𝑝},    𝑝

∈ [0,1]                                                                       (5.6)   
and 𝐹𝑋

−1+ is a more sophisticated inverse defined as 

                                                  𝐹𝑋
−1+ = sup{𝑥 ∈ ℝ|𝐹𝑋(𝑥) ≤ 𝑝},    𝑝

∈ [0,1]                                                                   (5.7) 
Our interest lies in the calculation of a reasonable upper bound for P. In order to obtain a lower bound 

for P, we consider the call counterpart of the pay-off of Swiss Re Bond rather than equation (5.5). We 

nomenclate this pay-off as 𝑃1, i.e., we have 

                                                                   𝑃1
= 𝐷𝑒−𝑟𝑇𝐸[(𝑆 − 𝑞0)

+]                                                                                      (5.8)   
We then exploit the put-call parity for Asian options to achieve the bounds for the pay-off in question. 

                              

VI. Put-Call Parity For The Swiss Re Bond 

We now derive the put-call parity relationship for the Swiss Re Bond. For any real number a, we have: 

                                                                                   (𝑎)+ − (−𝑎)+

= 𝑎                                                                                (6.1)   
So we obtain 

                                            𝑒−𝑟𝑇 (∑𝑆𝑖

3

𝑖=1

− 𝑞0)

+

− 𝑒−𝑟𝑇 (𝑞0 −∑𝑆𝑖

3

𝑖=1

)

+

= 𝑒−𝑟𝑇 (∑𝑆𝑖

3

𝑖=1

− 𝑞0)                             (6.2) 

On taking expectations on both sides, we obtain 

      𝑒−𝑟𝑇E  [(∑𝑆𝑖

3

𝑖=1

− 𝑞0)

+

] − 𝑒−𝑟𝑇E [(𝑞0 −∑𝑆𝑖

3

𝑖=1

)

+

] = 𝑒−𝑟𝑇E [∑𝑆𝑖

3

𝑖=1

− 𝑞0]                           

 

Finally, on multiplying by D and expanding the definition of 𝑆𝑖, we have 

 

        𝑃1 − 𝑃 = 𝐷𝑒
−𝑟𝑇E  [(∑5(𝑞𝑖 − 1.3𝑞0)

+

3

𝑖=1

− 𝑞0)]                           

                                ⟹ 𝑃1 − 𝑃 = 𝐷𝑒
−𝑟𝑇E  [5∑𝑒𝑟𝑡𝑖𝐶

3

𝑖=1

(1.3𝑞0, 𝑡𝑖) − 𝑞0] ,                                              (6.3)   

where 𝐶(𝐾, 𝑡𝑖) depicts the price of a European call on the mortality index with strike K, maturity 𝑡𝑖 and 

current mortality value 𝑞0. As in Bahl and Sabanis (2021), we note that this option would be in-the-money if the 

mortality index is greater than 1.3𝑞0 which is the trigger level of Swiss Re bond. Clearly, such instruments are 

not available for trading in the market at present. But a more comprehensive life market is developing and we 

feel such securities will soon be available (c.f. Bahl and Sabanis (2021), Blake et al. (2013) and Blake et al. 

(2008)). The pay-off structures, i.e. the design of the issued securities and the mortality contingent payments 

should be developed to appear attractive to investors and the re-insurer. Although, the Swiss Re bond was fully 

subscribed and press reports show that investors were quite satisfied with it (e.g. Euroweek, 19 December 2003), 

the market for mortality linked securities still needs innovations such as vanilla options on mortality index to 

provide flexible hedging solutions. Investors of the Swiss Re bond included a large number of pension funds as 

they could view this bond as a powerful hedging instrument. The underlying mortality risk associated with the 

bond is correlated with the mortality risk of the active members of a pension plan. If a catastrophe occurs, the 

reduction in the principal would be offset by reduction in pension liability of these pension funds. Moreover, the 

bond offers a considerably higher return than similarly rated floating rate securities (c.f. Blake et al. (2006)). In 

a manner similar to Bauer (2008), we feel the success of the life market hinges upon flexibility. As a result, such 

option-type structures enable re-insurer to keep most of the capital while at the same time being hedged against 

catastrophic mortality situation. Cox et al. (2006) present an interesting note on the trigger level of 1.3𝑞0 in 

context of 2004 tsunami in Asia and Africa. A mortality option of the above type would become extremely 

useful in such a case. Tsai and Tzeng (2013) and Cheng et al. (2014) decompose the terminal pay-off of the 

Swiss Re bond into two call options. 

Equation (6.3) gives the required put-call parity relation between the Swiss Re mortality bound and its 

call counterpart. Define 
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                                                    𝐺 = 𝐷𝑒−𝑟𝑇E  [5∑𝑒𝑟𝑡𝑖𝐶

3

𝑖=1

(1.3𝑞0, 𝑡𝑖) − 𝑞0]                                                          (6.4)   

 

Clearly, if we bound 𝑃1 by bounds 𝑙1 and 𝑢1, then the corresponding bounds for the Swiss Re mortality bond are 

as follows 

                                                               (𝑙1 − 𝐺)
+ ≤ 𝑃 ≤ (𝑢1 − 𝐺)

+                                                                            (6.5)   
 

 VII. An Upper Bound 𝐒𝐖𝐔𝐁𝟏 For The Price Of Swiss Re Bond 
This section will focus on finding the upper bound SWUB1 for the price of Swiss Re Bond 2003 by 

employing a Lagrange optimization technique. Before formally beginning the derivation of the upper bound, we 

throw light on an interesting proposition regarding the convexity of the value of a call option which would help 

us to arrive at the requisite upper bound. 

Proposition 1. The pay-off of the call option is a convex function5 of the strike price, i.e., E[(𝑋 − 𝑥)+] is 

convex in x. 

Proof. 

E [(𝑋 − (𝑎𝑥 + (1 − 𝑎)𝑦))
+
] = E [((𝑎 + 1− 𝑎)𝑋 − (𝑎𝑥 + (1 − 𝑎)𝑦))

+
] 

                                             = E [(𝑎(𝑋− 𝑥) + (1 − 𝑎)(𝑋 − 𝑦))
+
] 

                                            ≤ E[𝑎(𝑋− 𝑥)+ + (1 − 𝑎)(𝑋 − 𝑦)+] 
                                                   = 𝑎E[(𝑋 − 𝑥)+] + (1 − 𝑎)E[(𝑋− 𝑦)+] 

                                                                                                                                                                     

Now, to begin, consider a vector 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛) such that 𝜆𝑖 ∈ ℝ and ∑ 𝜆𝑖
𝑛
𝑖=1 = 1. Now, with the help of 

𝝀 we can write the pay-off of the Asian-type call option as shown below. 

                                        𝑃1

= 𝐶𝑒−𝑟𝑇E  [(∑(5 (
𝑞𝑖
𝑞0
− 1.3)

+

− 𝜆𝑖)

𝑛

𝑖=1

)

+

].                                                                    (7.1)        

Using the above proposition, equation (7.1) implies that the upper bound for the above Asian-type call can be 

expressed as follows: 

                                          𝑃1

≤ 𝐶𝑒−𝑟𝑇∑E  [(5 (
𝑞𝑖
𝑞0
− 1.3)

+

− 𝜆𝑖)
+

]

𝑛

𝑖=1

                                                                        (7.2)        

                                 ⟹ 𝑃1

≤ 5𝐷𝑒−𝑟𝑇∑E  [(𝑞𝑖 − 𝑞0 (1.3 +
𝜆𝑖
5
))

+

]

𝑛

𝑖=1

                                                                                      

                                              = 5𝐷𝑒−𝑟𝑇∑e𝑟𝑡𝑖  𝐶 (𝑞0 (1.3 +
𝜆𝑖
5
) , 𝑡𝑖)

𝑛

𝑖=1

                                                                       (7.3)   

As the 𝜆𝑖 are arbitrary, the goal is then to minimise this bound over all possible 𝝀 ensuring that 

𝑞0 (1.3 +
𝜆𝑖

5
) > 0. This in turn is equivalent to minimising the sum ∑ e𝑟𝑡𝑖  𝐶 (𝑞0 (1.3 +

𝜆𝑖

5
) , 𝑡𝑖)

𝑛
𝑖=1 . In order to 

achieve this, we assume that the European call option pay-off viz. 𝐶(𝐾, 𝑇) > 0 for every positive K, T and that 

𝐶(𝐾, 𝑇) ↓ 0 as 𝐾 → ∞. Then C is a convex, strictly decreasing function of K with a continuous, strictly 

increasing derivative 
𝜕𝐶

𝜕𝐾
< 0. We define 

                                                             𝑑𝑖 = 𝑞0 (1.3 +
𝜆𝑖
5
) ; 𝑖

= 1,2, … , 𝑛                                                                              (7.4)   
Next, we define the Lagrangian as 

𝐿(𝝀, ∅) =
5

𝑞0
∑e𝑟𝑡𝑖  𝐶( 𝑑𝑖 , 𝑡𝑖)

𝑛

𝑖=1

+ ∅(∑𝜆𝑖

𝑛

𝑖=1

− 1), 

 
5 A function 𝑓: 𝐼 → ℝ, where I is an interval in ℝ, is convex if and only if 𝑓(𝑎𝑥 + (1 − 𝑎)𝑦) ≤ 𝑎𝑓(𝑥) +
(1 − 𝑎)𝑓(𝑦)   ∀𝑎 ∈ [0,1] and any pair of elements 𝑥, 𝑦 ∈ 𝐼. 
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where ∅ is the Lagrange's multiplier. We wish to find 𝜆𝑖 for each i, that minimises L. Differentiating L w.r.t 𝜆𝑖, 
we obtain 

𝜕𝐿

𝜕𝜆𝑖
= −𝑃[𝑞𝑖 ≥ 𝑑𝑖] + ∅. 

Thus, it is evident that the function L has a point of maxima or minima when 𝜆𝑖 solves the following equation 

for every i, i.e., 

                                                                  𝜆𝑖

=
5

𝑞0
(𝐹𝑞𝑖

−1(1 − ∅) − 1.3𝑞0)                                                                              (7.5)   

where 𝐹𝑞𝑖
−1 is the inverse distribution function of the mortality index 𝑞𝑖. Further more, since 𝑞𝑖 > 0, we 

have that the strike prices of the call viz. 𝑑𝑖 = 𝑞0 (1.3 +
𝜆𝑖

5
) > 0, ∀𝑖. The next aim is to check that the constraint 

∑ 𝜆𝑖
𝑛
𝑖=1 = 1 is satisfied. For this, we define H as 

                                                          𝐻(∅) =∑𝜆𝑖

𝑛

𝑖=1

− 1

=
5

𝑞0
(𝐹𝑞𝑖

−1(1 − ∅) − 1.3𝑞0) − 1                                                 (7.6) 

Under the aforesaid assumptions, H is a continuous function of ∅. Moreover, since by assumption 𝐹𝑞𝑖 is 

injective for all 𝑡𝑖, 𝑖 = 1,2, … , 𝑛, it follows that H is strictly decreasing in ∅. Hence, a solution to 𝐻(∅) = 0 

exists if inf𝐻(∅) < 0 < sup𝐻(∅). For ∅ = 1, 𝐻(∅) = −6.5𝑛 − 1 and for the Swiss Re bond as 𝑛 = 3, we have 

𝐻(1) = −20.5. As far as searching for such a value of $\phi$ is concerned, for which 𝐻(∅) > 0, we can 

immediately see that 𝐹𝑞𝑖(𝐾) = 1, only when 𝐾 → ∞. Thus,  lim∅↓0𝐻(∅) = ∞ and so the application of 

intermediate value theorem ensures that we can find ∅∗ that satisfies 𝐻(∅∗) = 0. Also ∅∗ is unique since H is 

strictly decreasing. 

The final task is to check that the stationary point of L, which is obtained when 𝝀 = 𝜆(∅∗), is a point 

of minima. This is indeed straightforward because 
𝜕𝐶

𝜕𝐾
 is strictly increasing. This implies that on using equation 

(7.5) in conjunction with equation (7.3), a minimal upper bound for the call counterpart of the Swiss Re bond is 

given by 

                                                                           𝑃1

≤ 5𝐷𝑒−𝑟𝑇∑e𝑟𝑡𝑖  𝐶(𝐹𝑞𝑖
−1(1 − ∅∗), 𝑡𝑖)

𝑛

𝑖=1

.                                                  (7.7) 

Evidently, the argument of 𝐹𝑞𝑖
−1 in this result is identical to the one in equation (7.6) and this allows us to rewrite 

the upper bound as  

                                                                  𝑃1 ≤ 5𝐷𝑒
−𝑟𝑇∑e𝑟𝑡𝑖  𝐶(𝐹𝑞𝑖

−1(𝑥), 𝑡𝑖)

𝑛

𝑖=1

=:ub1.                                                        (7.8) 
where 𝑥 ∈ (0,1) is the solution of the equation  

                                                                ∑𝐹𝑞𝑖
−1(𝑥)

𝑛

𝑖=1

=
𝑞0
5
(1 + 6.5𝑛)                                                                                       (7.9) 

which is a direct consequence of equation (7.6). 

                          Now, invoking the put-call parity of section 6, we have for the Swiss Re bond 

                                                                       𝑃 ≤ (𝑢𝑏1 − 𝐺)
+

=:  SWUB1                                                                          (7.10) 
where G is defined in equation (6.4). This provides an alternative methodology in comparison to comonotonicity 

approach employed in Bahl and Sabanis (2021) to obtain SWUB1. 

 

VIII. Performance Of 𝐒𝐖𝐔𝐁𝟏  
We present below in tables that follow the values of the upper bound vis-a-vis the well-known Monte 

Carlo (MC) Estimates for the price of the Swiss Re bond for a variety of models. 

In tables 2 and 3, we assume that the mortality evolution process {𝑞𝑡}𝑡≥0 obeys the Black-Scholes 

model, specified by the following stochastic differential equation (SDE) 

𝑑𝑞𝑡 = 𝑟𝑞𝑡𝑑𝑡 + 𝜎𝑞𝑡𝑑𝑊𝑡 . 
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 In order to simulate a path, we will consider the value of the mortality index in the three years that form 

the term of the bond, i.e., 𝑛 = 3. In fact we consider the time points as 𝑡1 = 1,… , 𝑡𝑛 = 𝑇 = 3.  We invoke the 

following equation to generate the mortality evolution: 

                              𝑞𝑡𝑗 = 𝑞𝑡𝑗−1exp [(𝑟 −
1

2
𝜎2) 𝛿𝑡 + 𝜎√𝛿𝑡𝑍𝑗]          𝑍𝑗~𝑁(0,1),

𝑗 = 1,2, … , 𝑛                                (8.1) 
We highlight below the parameter choices in accordance with Lin and Cox (2008). The value of the 

interest rate is varied in table 2 while table 3 experiments with the variation in the base value of the mortality 

index while assuming a zero interest rate. 

Parameter choices for tables 1 and 2 with t specified in terms of years are: 

                                                     𝑞0 = 0.008453, 𝑇 = 3, 𝑡0 = 0,  𝑛 = 3,  𝜎 = 0.0388. 

We further depict the results of tables 2 and 3 in figures 1-3. While figures 1 and 2 depict comparisons 

between the bounds, figure 3 portrays the price bounds for the Swiss Re bond generated by the Black-Scholes 

model. We will let MC denote the Monte Carlo estimate for the Swiss Re bond. 

 

Table 2 reflects that the relative difference (=
|𝑏𝑜𝑢𝑛𝑑−𝑀𝐶|

𝑀𝐶
) between the lower bound and the 

benchmark Monte Carlo estimate increases with an increase in the interest rate for a fixed value of the base 

mortality index 𝑞0. This observation is echoed by figure 1. On the other hand, figure 2 depicts the difference 

between the Monte Carlo estimate of the Swiss Re bond and the derived bound. The absolute difference 

between the estimated price and the bounds increase as the value of the base mortality index is increased and 

then there is a switch and this gap begins to diminish. This observation is supported by the fact that an increase 

in the starting value of mortality increases the possibility of a catastrophe which leads to the washing out of the 

principal or in other words the option goes out of money. 

 

Table no 2: SWUB1 for the Swiss Re Mortality Bond under the Black-Scholes Model with 𝑞0 = 0.008453 and 

𝜎 = 0.0388 in accordance with Lin and Cox (2008). 

r SWUB1 MC S.E. of M.C. 

0.035 0.899131637780 0.899131338643 0.000007814868 

0.030 0.913324320930 0.913324365180 0.000005483857 

0.025 0.927447619324 0.927447582074 0.000003766095 

0.020 0.941626384749 0.941626356704 0.000002549695 

0.015 0.955935736078 0.955935715489 0.000001673442 

0.010 0.970419129772 0.970419112046 0.000001032941 

0.005 0.985101141738 0.985101142704 0.000000646744 

0.000 0.999995778584 0.999995770298 0.000000405336 

 

Table no 3: SWUB1 for the Swiss Re Mortality Bond under the Black-Scholes Model with 𝑟 = 0.0 and 𝜎 =
0.0388 in accordance with Lin and Cox (2008). 

𝑞0 SWUB1 MC S.E. of M.C. 

0.008 0.999999915253 0.999999915033 0.000000052478 

0.009 0.999822875816 0.999822630214 0.000003051524 

0.010 0.986262918347 0.978782997810 0.000042738093 

0.011 0.877336305502 0.652245039892 0.000090193709 

0.012 0.395672911251 0.094677358603 0.000089559585 

0.013 0.083466184427 0.001665407936 0.000011391823 

0.014 0.008942985848 0.000002890238 0.000000379522 

 

In our next example, we assume that the mortality rate ‘q’ obeys the four-parameter transformed 

Normal (𝑆𝑢) Distribution (for details see Johnson(1949) and Johnson et al. (1994)) which is defined as follows 

 

                                                            𝑠𝑖𝑛ℎ−1 (
𝑞 − 𝛼

𝛽
)

= 𝑥~𝑁(𝜇, 𝜎2),                                                                                  (8.2) 
where 𝛼, 𝛽, 𝜇 and 𝜎 are parameters (𝛽, 𝜎 > 0) and 𝑠𝑖𝑛ℎ−1 is the inverse hyperbolic sine function. 

For table 4, we vary the interest rate as in table 2 and use the parameter set employed by Tsai and 

Tzeng (2013). The aforesaid authors use the mortality catastrophe model of Lin and Cox (2008) to generate the 

data and then utilize the quantile-based estimation of Slifker and Shapiro (1980) to estimate the parameters of 
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the 𝑆𝑢-fit. The initial mortality rate and time points are same as for tables 2 and 3. The following arrays present 

the values of the parameters for the three years 2004, 2005 and 2006 that were covered by the Swiss Re bond. 

 

                                                    𝛼 =[0.008399, 0.008169, 0.007905], 

                                                    𝛽 =[0.000298, 0.000613, 0.000904], 

 

                                                        𝜇 =[0.70780, 0.58728, 0.58743] 

and 

                                                        𝜎 =[0.67281, 0.50654, 0.42218]. 

                       

Table no 4: SWUB1 for the Swiss Re Mortality Bond under the 𝑆𝑢 distribution with 𝑞0 = 0.008453 and 

parameter choice in accordance with Tsai and Tzeng (2013). 

r SWUB1 MC S.E. of M.C. 

0.035 0.88680657 0.88468962 0.00006349 

0.030 0.90548179 0.90422765 0.00004987 

0.025 0.92275950 0.92201394 0.00003804 

0.020 0.93901043 0.93863396 0.00002794 

0.015 0.95458265 0.95441569 0.00001956 

0.010 0.96977488 0.96968765 0.00001352 

0.005 0.98482046 0.98478917 0.00000859 

0.000 0.99988427 0.99987622 0.00000513 

 

Finally in tables 5 and 6, we experiment with log gamma distribution by varying the interest rate in 

table 4 and the base mortality rate in the latter. The parameters are chosen as in Cheng et al. (2014) who employ 

an approach similar to Tsai and Tzeng (2013) outlined above with 𝑞0=.0088 but use maximum likelihood 

estimation to obtain the parameters of the fitted log gamma distribution. As before, the following arrays present 

the year wise parameters 

                                                        p=[61.6326, 64.2902, 71.8574], 

                                                        a=[0.0103, 0.0098, 0.0080], 

                                                        𝜇=[-5.2452, -5.4600, -5.7238] 

and 

                                                        𝜎 = [7.4x10−5, 9.5x10−5, 9.4x10−5].  
Tables 5 and 6 clearly show that even for non-normal universe, the bound is extremely precise. 

 

Table no 5: SWUB1 for the Swiss Re Mortality Bond under the transformed Gamma distribution with 𝑞0 =
0.0088 and parameter choice in accordance with Cheng et al. (2014). 

r SWUB1 MC S.E. of M.C. 

0.035 0.86610436 0.85408651 0.00049859 

0.030 0.88724013 0.87815608 0.00044050 

0.025 0.90728309 0.90050920 0.00038741 

0.020 0.92636640 0.92103020 0.00034012 

0.015 0.94463331 0.94092949 0.00028650 

0.010 0.96223065 0.95947457 0.00024259 

0.005 0.97930297 0.97748291 0.00020357 

0.000 0.99598733 0.99466024 0.00016677 

 

Table no 6: SWUB1 for the Swiss Re Mortality Bond under the Black-Scholes Model with 𝑟 = 0.0 and 

parameter choice in accordance with Cheng et al. (2014). 

𝑞0 SWUB1 MC S.E. of M.C. 

0.008 0.99977956 0.99978465 0.00003227 

0.009 0.99338335 0.99003596 0.00023335 

0.010 0.95818959 0.89137680 0.00077924 

0.011 0.83720797 0.56844674 0.00128761 

0.012 0.61383872 0.20822580 0.00105003 

0.013 0.38182244 0.04612178 0.00052388 

0.014 0.21222938 0.00673234 0.00019165 
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IX. Conclusions 

Mortality forecasts are extremely important in the management of life insurers and private pension 

plans. Securitization and construction of mortality bonds has become an important part of capital market 

solutions. In the era prior to the introduction of the Swiss Re bond in 2003; life insurance securitization was not 

designed to handle mortality risk. 

This article proposes a model independent upper price bound for the Swiss Re mortality bond 2003. As 

stated in Deng et al. (2012), an incomplete mortality market that has no arbitrage opportunities guarantees the 

existence of at least one risk-neutral measure termed the equivalent martingale measure Q that can be used for 

calculating the fair prices of mortality securities. We rely on this fact and devise the upper bound for the 

mortality security in question without assuming any particular model. Model-specific bounds can then be 

achieved by plugging in the requisite models into the general bounds. The bound is extremely tight around the 

Monte Carlo values as can be compared from the respective tables for all three models. 

The fact that a well-known technique of optimization in Mathematics viz. the Lagrangian technique has 

been utilized to obtain the bound with simplicity and ease, it makes the bound much more appealing for the 

practitioners to apply and the academicians to access. 

 

 
Figure 1: Relative Difference of SWUB1w.r.t. MC estimate under Black-Scholes Model 

 

 
Figure 2: Performance of Upper bound under B-S model in terms of difference from MC estimate for r=0 

 

 
Figure 3: Upper Price Bound under Black-Scholes Model for the parameter choice of Lin and Cox(2008) 

Model 


