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Abstract 
The theory has been generally accepted and established in recent years but a thorough introduction is required 

to make the concept accessible to a wider audience. Probabilities provide a detailed introduction to incorrect 

likelihoods, including hypotheses and implementations that illustrate the current state of the art. Important 

reading for academic researchers, institutes of science and other organisations and professionals working in 

fields such as risk management and engineering. Imprecise probability generalizes probability theory to require 

partial probability specifications and applies where information is sparse, implicitly or in dispute, where it is 

difficult to define a uniquely unique probability distribution. The theory seeks to more accurately reflect the 

information available. There is a long history of the concept of using unrefined probabilities. The first 

systematic diagnosis dates from the mid-19th century at least. The theory has been that strongly in the late 

1990s, and the term imprecise probability was influenced by detailed foundations. 
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I. Introduction 
With its principle of buying and selling game costs, Walley expands the conventional subjective 

probability theory while the approach of Weichsel Berger generalizes Kolmogorov's axioms without forcing an 

interpretation. Inaccurate probability assignments to non-empty closed convex sets of probability distributions 

are typically considered conditions of consistency. The theory also offers a formal basis for models used in 

robust statistics and non-parametric figures as a welcome by-product. Also included are ideas focused on the 

combination of Choquet and so-called two-monotone, totally monotonous capabilities that became very 

common under the name of the Dempster-Shafer trust in artificial intelligence. In addition, the notion of game 

theory is closely related to Shafer and Vovk. 

Perhaps the simplest generalization is to substitute a single probability definition for an interval. Lower 

and high odds, suggested by or more generally, lower and upper expectations (previsions), [4] 

[5] [6] [7] aim to fill this gap: 

with 

a flexible continuum in between. 

Some approaches, condensed under the name non-added substance probabilities,[8] straightforwardly 

utilize one of these set capacities, accepting the other one to be normally characterized to such an extent that

the complement of A.Other related concepts understand the corresponding intervals

for all events as the basic entity. 

 

Mathematical Models 

Therefore, although the term imprecise probability appears to have been developed in the 90s and 

encompasses many extensions of probability theory, even though the word unfortunate misname allows for a 

more reliable quantification of uncertainty than reliable probability: 

➢ Previsions 

➢ Random set theory 

➢ Dempster-Shafer evidence theory 

➢ Lower and upper probabilities, or interval probabilities 

➢ Belief functions 
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➢ Possibility and necessity measures 

➢ Lower and upper previsions 

➢ Comparative probability orderings 

➢ Partial preference orderings 

➢ Sets of desirable gambles 

➢ p-boxes 

➢ Robust Bayes methods 

 

Interpretation of Imprecise Probabilities 

Walley proposed a synthesis of various theories of imprecise probability [7], but this is by no means 

the first attempt to formalize imprecise probabilities. Walley's language of imprecise probabilities, when it 

comes to probability definitions, is based on the analytical version of the Bayesian interpretation. Walley 

describes higher and lower chances as special cases of upper and lower chances and the Bruno de Finetti 

gambling system. In simple terms, the lower forecast of a decision-making officer is the highest price the 

decision-maker thinks he or she will buy a game, and the top forecast is the lowest price the decision-maker is 

sure he or she can buy the opposite of the bet. The reward at which the decision maker is prepared to take the 

game on either hand, when the top and the bottom predictions are equal, they reflect together the appropriate 

reward for the decision-maker. A fair price contributes to correct probabilities. 

The discrepancy between the upper and lower predictions of a decision maker or the gap between 

accuracy and inaccuracy is the main disparity between theories regarding probabilities. These gaps naturally 

occur in betting markets which, due to asymmetric knowledge, are financially illiquid. Henry Kyburg also 

repeatedly makes this gap because of his probabilities intervals, although he and Isaac Levi also provide other 

reasons for intervals or distributions which reflect believing states. 

 

Issues with Imprecise Probabilities 

One difficulty with unknown probabilities is that the use of an interval is often unilateral, rather than a 

broader or narrower degree of caution or audacity. It could be a level of trust, level of fluidity, or acceptance 

threshold. This is not so much a concern at lower and upper intervals deriving from a variety of probability 

distributions, e.g. a set of priors followed by conditioning on each part of the set. However, it may contribute to 

the question as to why some distributions are included and others are not included in the priors. 

Another point question is why, rather than a single number, one could be right about two numbers, one 

lower bound and one upper bound. This question can be purely theoretical, provided that the power of a model 

with intervals is intrinsically higher than a model with points of view. It raises concerns about unsuitable claims 

for accuracy at endpoints as well as point values. 

More realistic is what kind of decision theory will take advantage of unreliable probabilities. Yager's 

thesis persists for fuzzy measures. Levi's works are instructive for convex distribution sets. The method asks if 

it is better to take a decision than to simply follow the average or a Hurwicz law to regulate the boldness of the 

interval. In the literature there are other methods. 

 

Robust Solution Concept 

Consider a decision problem under uncertainty where the decision is based on the maximization of a 

scalar (real valued) outcome. The simplest representation of uncertainty depends on a finite set of 

predefined scenarios. The finaloutcome is uncertain and only its realizations under various scenarios are 

known. Exactly, for each scenario w the corresponding outcome realization is given as a function of the 

decision variables where x denotes a vector of decision variables to be selected from the feasible 

set of constraints under consideration. Let us define the set of attainable outcomes

. We are interested in larger outcomes under each 

scenario. Hence, the decision under uncertainty can be considered a multiple criteria optimization problem 

 
From the point of view of dynamic under vulnerability, the model (1) just indicates that we are keen on 

augmentation of results under all situations . So as to make the different target model operational for the 

choice help process, one needs to expect some arrangement idea balanced to the leader's inclinations 

Inside the choice issues under hazard it is accepted that the specific estimations of the fundamental 

situation probabilities are given or can be evaluated. This is a reason for the stochastic 
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programming approaches where the arrangement idea relies upon the augmentation of the normal worth (the 

mean result) 

 

or some risk function. In particular, the risk functions based on the downside 

semi deviations 

 
are consistent with the second degree stochastic dominance and thereby coherent. Among them, the 

Mean Absolute Deviation  related risk function can be expressed as the mean of downside distribution 

 
Many scholars have recently implemented the second-order quintile risk indicators in various ways. 

Generally, the (worst) tail mean is defined as the mean within the given (quantile) tolerance of the worst 

outcome. The tail mean sum is generally called tail VaR, average VaR, or Conditional VaR (where VaR reads 

after Value-at-risk), in the sense of risk literature, and in particular with respect to financial application. In 

addition, the most popular name for CVaR is now. Nonetheless, since we consider the metric without a formally 

defined probabilistic space with regard to distributions, we will refer it to as the tail mean. The threshold mean 

maximization is consistent with stochastic dominance in the second degree and complies with coherent risk 

calculation criteria. 

For any probabilities  and tolerance level  the corresponding tail mean can be mathematically 

formalized as follows. Having defined the right-continuous cumulative distribution function (cdf): 

we introduce the quantile function  as the left continuous inverse of the 

cumulative distribution function Fy: 

 

By integrating  one gets the (worst) tail mean 

 
The utter Lorenz curve's point value. Finally, the tail means are related directly to the dual risk theory 

of preference. 

Maximization of the tail  

 

defines the tail  solution concept. When parameter  approaches 0, the tail  tends to 

the smallest outcome 

 

On the other hand, for  the corresponding tail mean becomes the standard mean 

 
Note that, due to the finite number of scenarios, the tail ˇ-mean is well defined by the following 

optimization 

 
Problem (6) is a Linear Program for a given result vector y while it gets nonlinear for y being a vector 

of variables as in the tail problem (5). Notably, this trouble can be overwhelmed by a comparable LP 
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detailing of the ˇ-imply that permits one to actualize the problem (5) with helper linear disparities. In 

particular, the accompanying hypothesis reviews LP model for persistent appropriations which stays substantial 

for a general dispersion. In spite of the fact that we present another verification which can be additionally 

summed up for a group of hearty arrangement ideas we consider. 

Theorem 1. For any outcome vector y with the corresponding probabilities  and for any real value 

 the tail  outcome is given by the followinglinear program: 

 
Proof: The theorem can be proven by taking advantage of the LP dual to (6). Introducing dual variable t 

corresponding to the equation  and variables  corresponding to upper bounds on u! one gets 

the LP dual (7). Due to the duality theory, for any given vector y the tail  can be found as the 

optimal value of the LP problem (7). 

The odds of the situation are always unclear or unreliable. Uncertainty can then be represented by 

limits (intervals) with independently varying potential probability values. We rely on this interpretation in order 

to describe a solid solution definition. Typically, we take into account uncertain hypercube probabilities: 

 
where obviously 

 
With the emphasis on the mean result as the primary measure of device performance, we get the robust 

mean solution principle 

 
However, provided that all limitations of achieved set A remain unchanged while the probabilities are 

disturbed, the robust medium solution can be reprogrammed as 

 

 

represent the worst case mean outcomes for given outcome vector  with respect to the 

probabilities set U. 

For different risk functions used instead of the mean, similar solid solution principles can be 

developed. The corresponding robust tail is used to optimize the CVaR  solution can be expressed as 

 
Where, 
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represents the worst case tail ˇ-mean outcome for given outcome vector  with respect to the 

probabilities set U. 

 

Portfolio Optimization 

The problem we are considering with portfolio optimization follows the original formulation of 

Markowitz and relies on single investment model duration. An investor allocates the capital to different 

securities at the beginning of the transaction, assigning each security a non-negative (capital share) weight. Let 

 denote a set of securities considered for an investment. For each security  its rate of 

return is represented by a random variable Rj with a given mean 

Note the vector of decision variables xj that represents portfolio weights. xj The weights must comply with a 

range of restrictions for a portfolio. The best way to evaluate a workable set Q is to render weights one and not 

negative (short sales are not permitted), i.e. 

(14) 

Hereafter, we examine the set Q with restrictions (14) in detail. Nonetheless, the results presented can 

be easily generalized to a general realistic LP as a system of linear equations and inequalities, thus permitting 

short sales, maximum limits on single shares or portfolio structure limits facing a real-life investor to be 

included. 

(15) 

Following Theorem and taking into account (15), for any arbitrary intervals 

 of probabilities, the corresponding robust portfolio optimization problem (10) can 

be given by the following LP problem: 

(16) 

Where t is an unbounded variable. 

As a particular case of relaxed lower bounds on scenario probabilities , following 

Corollary 2 one gets the classical CVaR portfolio optimization model 

(17) 

with probabilities  and the tolerance level  

Except from the corresponding portfolio constraints (14), model (17) contains m nonnegative variables 

 plus single variable t and m corresponding linear inequalities. Hence, its dimensionality is proportional to 

the number of scenarios m. Exactly, the LP model contains  variables and constraints. It does 

not cause any computational difficulties for a few hundreds scenarios as in many computational analysis based 

on historical data, However, in the case of more sophisticated simulation models employed for scenario 
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generation one that get many thousand scenarios. This increasing lead to the LP model (27) with huge number 

of variables and constraints thus decreasing the computational efficiency of the model. 

The dual model (13) helps one to formulate the corresponding robust portfolio optimization problem 

(10), for any arbitrary intervals of probabilities (8), as the following LP issue: 

(18) 

The dual model takes the following form for the particular case of the CVaR (17) model, which 

describes the case of relaxed lower limits. 

(19) 

The dual LP model contains m variables limitations (n disparities and one condition) 

barring the straightforward limits on u! not influencing the problem intricacy. In reality, the quantity of 

requirements in (19) is corresponding to the portfolio size n, in this manner it is free from the quantity of 

situations. Precisely, there are variables and This ensures a high computational productivity of 

the double model in any event, for exceptionally huge number of situations. Note that conceivable extra 

portfolio structure prerequisites are normally demonstrated with rather modest number of linear requirements in 

this manner producing modest number of extra variables in the double model. Absolutely, the ideal portfolio 

shares xj are not straightforwardly spoken to inside the arrangement vector of problem (29) yet they are 

effectively accessible as the double variables (shadow costs) for imbalances Additionally, the double model 

(19) might be viewed as a unique case inside the general hypothesis of double portrayals of reasonable 

proportions of hazard, following from conjugate duality. 

 

II. Conclusion 
We have studied the robust middle solution principle where uncertainties differ independently from 

one scenario likelihood to another by limit (intervals). In general, such an approach results in complex 

operations Analysis models with vector (probability) coefficients. However, we have shown that operations 

work with robust mid-solution concepts can express itself with linear help disparities similar to the tail –mean 

solution principle based on the average maximization in terms of the worst outcomes. In addition, the 

Operations Research solution for upper probability limits is the tail-mean for a suitable value. The operations 

research solution can be found for upper and lower limits by optimizing the properly combined mean and tail 

mean. Thus, a relatively stable mean solution can be represented with optimization problems that are almost 

close to the tail medium at arbitrary probability intervals, which can easily be enforced with auxiliary linear 

inequality. When considering the tail medium as the basic optimization criterion (CVaR optimization), the 

correct robust solution definition may be expressed as the standard tail mean with a properly specified tolerance 

level and rescaled probabilities for any arbitrary perturbation collection. 
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