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Abstract 
In this study for Magnetohydrodynamic (MHD) Couette flow incorporating the effects of transpiration cooling, 

which consists the problem of a Couette flow between two horizontal parallel porous flat plate of an electrically 

conducting viscous incompressible fluid. The stationary plate is subjected to a transverse sinusoidal injection of 

the fluid and its corresponding removal by constant suction through the other plate, in uniform motion and 

because of injection velocity the flow becomes three-dimensional. a magnetic field of uniform strength is also 

applied normal to the planes of the plates. the effect of injection/suction velocity and the magnetic field on the 

flow field, skin friction and heat transfer are reported and discussed in detail in graphically. 
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I. Introduction 
Transpiration cooling, achieved by the injection or suction of fluid through a porous surface, is an 

effective thermal control technique widely used in high-temperature environments such as gas turbines, nuclear 

reactors, aerospace structures, and electronic cooling systems. The interaction between transpiration effects and 

non-Newtonian fluid behavior significantly alters the velocity and temperature distributions, making 

mathematical modeling essential for accurate prediction and design. 

Bansal and Jain (1973) discussed about on the plane couette flow of a viscous compressible fluid with 

transpiration cooling with exact solution for the plane couette flow of a viseous compressible, heat conducting, 

perfect gas with the same gas injection at the stationary plate and its corresponding removal at the moving plate 

has been studied. They found that the gas injection is very helpful in reducing the temperature recovery factor. 

Effects of injection on the shearing stress at the lower plate, longitudinal velocity pro¡ and the enthalpy arr 

shown graphically. Gersten and Gross (1974) studied on the three dimensional convective flow and heat transfer 

through a porous medium, while Gulab and Mishra (1977) expressed an idea through the equation of motion for 

MHD flow. Raptis (1983) worked on the free convective flow through a porous medium bonded by the infinite 

vertical plate with oscillating plate temperature and constant suction, and again Raptis and Perdikis (1985) 

further worked on the free convective flow through a highly porous medium bounded by the infinite vertical 

porous plate with constant suction. Although in above studies the investigators have restricted themselves to 

two-dimensional flows, but there may arise situations, where the flow field may be essentially three-

dimensional. Therefore Singh (1991) worked on three dimensional MHD flow past a porous plate, and again 

Singh (1993) also worked in the same direction and studied the problem of three dimensional viscous flow and 

heat transfer along a porous plate. Again Ahmed and Sharma (1997) discussed about the three-dimensional free 

convective flow of an incompressible viscous fluid through a porous medium with uniform free steam velocity, 

while Singh (1999) again studied about a three-dimensional Couette flow with transpiration cooling by applying 

transverse sinusoidal injection velocity at the stationary plate velocity. Kim (2000) discussed the unsteady MHD 

convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, and Kamel 

(2001) discussed about the unsteady MHD convection through porous medium with combined heat and mass 

transfer with heat source/sink. Kumar et al (2004) discussed about the Hall current on MHD free- convection 

flow through porous media past a semi-infinite vertical plate with mass transfer, while Muhammad et al (2005) 

discussed the effects of Hall current and heat transfer on the flow due to a pull of eccentric rotating. Attia (2006) 

observed the unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties.. 

Here our main motto  flow velocity decreases with the increasing Hartmann number (M), and injection 

parameter (  ).The cross flow velocity component w due to the transverse sinusoidal injection velocity 

distribution applied through out the porous plate at rest and the cross flow velocity profile is shown by 

graphically, while increasing the Hartmann number (M) or the injection parameter (  ), the velocity component 



A Mathematical Model For MHD Couette flow with Transpiration Cooling 

DOI: 10.9790/0661-2104018391                                   www.iosrjournals.org                                     84 | Page 

w first decreasing up to the middle of channel and increases there after. The skin-friction components 

zx and
in the main flow and transverse direction, respectively. 

II. Basic equations 

 Consider a coordinate system with plate lying vertically on x-z plane such that x- axis is taken along the 

plate in the direction of flow and y- axis is perpendicular to the plane of the plate and direction into the fluid 

which is flowing with free stream velocity U and the lower plate is to have a transverse sinusoidal injection 

velocity of the form 
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The problem is governed by the following non dimensional equations:   
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Here the non-dimensional variables are: 
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The boundary conditions to this problem in dimensionless form are as: 

    
.1,1,0,1,1

.0,0,0,cos1)(,0

=====

===+==

yforTwvu

yforTwzzvu 
                                       …(8)    



A Mathematical Model For MHD Couette flow with Transpiration Cooling 

DOI: 10.9790/0661-2104018391                                   www.iosrjournals.org                                     85 | Page 

III. Mathematical Analysis 

   As we know that the amplitude of injection velocity  is very smalls therefore we can assume the 

following form the solutions 
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When 0= , the problem reduces to two-dimensional then the solution of this two dimensional problem is  
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when ,0  in equation (9) then Substituting in to the equations (2) to (6) and comparing the coefficient of 

identical powers of  , and neglecting the coefficient 
32 , etc. The following first order equations obtained: 
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The corresponding boundary conditions  are; 
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IV. Cross flow solution 

For cross flow solution we assume the following form of v1, w1and p1 : 
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where the   denote the differentiation with respect to y. Substituting equation (19) in equations (15) and (16). 

We get the following ordinary differential equations. 

     
=−− pvvv  2

.                                                                      …(20) 

     ( ) .222

 =+−− pvMvv                                                         …(21) 

Now using the transformed boundary conditions the equations (20) and (21) obtained in the following form 

   ( ) .cos
1

,
4

1

1 zeD
D

zyv
i

yr

i
i 







= 

=

                                                             …(22) 

   ( ) .sin
1

,
4

1

1 zerD
D

zyw
i

yr

ii
i 










−= 

=

                                                       …(23)         

( ) ( )   zerMrrD
D

zyp
i

yr

iiii
i 


cos

1
,

4

1

2223

21 







+−−= 

=

                       …(24) 

where 

 22

111 4
2

1
++= ppr ,      22

112 4
2

1
+−= ppr  , 

 22

223 4
2

1
++= ppr   ,         22

224 4
2

1
+−= ppr  ,              

( )( )( ) 
( )( )( )  ( )( )( ) .42134132

3121

13424123

3112

rrrrrrrr

rrrr

eerrrreerrrr

eerrrrD

++++

++

+−−++−−+

+−−=
 

( ) ( )

( ) ( )

( ) ( ) 











=

−=

=







.cos,

.sin
1

,

.cos,

1

1

1

zypzyp

zyvzyw

zyvzyv










A Mathematical Model For MHD Couette flow with Transpiration Cooling 

DOI: 10.9790/0661-2104018391                                   www.iosrjournals.org                                     87 | Page 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) .

.

.

.

414332

124142

214143

312413

2434323214

1244122413

2141434322

1344233121

rrrrrr

rrrrrr

rrrrrr

rrrrrr

errrerrrerrrD

errrerrrerrrD

errrerrrerrrD

errrerrrerrrD

+++

+++

+++

+++

−+−+−=

−+−+−=

−+−+−=

−+−+−=

,           

Where     









+=

k


 22

 

V. Main flow solution 

We consider the equations of the main flow component ( )zyu ,1  and temperature field ( )zyT ,1 , in the 

following form: 
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                     ( ) ( ) zyTzyT cos,1 =                                                        …(26) 

Substituting these values in equations (14) and (17) respectively. We obtain the ordinary differential equations 

in the following form: 
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( )
( )

( )

( )

( )

( ) ( )

( )
z

mr

emD

r

eD

r

eD

mr

eDm

eeD
eKzyu

i i i

yrm

i

i

yrm

i

i i

yrm

i

i i

yrm

i

mm
i

yn

i

iii

ii

i








cos
3

3
,

2

1

4

3 2

2

4

3

2

1 1

1
2

1

1

22

11

21













−
−−





+
−−

+



=

 



= =

++

=

+

=

+

=

            …(30) 

 ( )
( )

( )

( )

( )

( )
.

1
,

2

1

2

1

4

3 21

22

1





















+
+

+−
+=   

= = =

++

i i i ri

yrP

i

ri

yrP

i

P

rys

i
Pmr

eD

Pmr

eD

eD

P
eNzyT

irir

r

i



 


cosz                        

                                                                                                         …(31) 



A Mathematical Model For MHD Couette flow with Transpiration Cooling 

DOI: 10.9790/0661-2104018391                                   www.iosrjournals.org                                     88 | Page 

where

( )( )
( )

( )( ) ( )( ) ( )( )
( )

.
33

2

1

4

3

2

1

4

3 2

2

1

1

1

122221212










−

−
−

−
−

−
+

−

−
=    

= = = =

++++

i i i i i

rmn

i

i

rmn

i

i

rmn

i

i

rmn

i

mr

eemD

r

eeD

r

eeD

mr

eemD
AK

iiii



( )( )
( )

( )( ) ( )( ) ( )( )
( )

.
33

2

1

4

3

2

1

4

3 2

2

1

1

2

121211111













−

−
−

−
−

−
+

−

−
−=    

= = = =

++++

i i i i i

rmn

i

i

rmn

i

i

rmn

i

i

rmn

i

mr

eemD

r

eeD

r

eeD

mr

eemD
AK

iiii



( )( )
( )

( )( )
( ) 









+

−
+

+

−
=  

= =

−−2

1

4

3 21

1

22

i i ri

rPs

i

ri

rPs

i

Pmr

eeD

Pmr

eeD
BN

irir





( )( )
( )

( )( )
( ) 









+

−
+

+

−
−=  

= =

−−2

1

4

3 21

2

11

i i ri

rPs

i

ri

rPs

i

Pmr

eeD

Pmr

eeD
BN

irir





 

( )( )2121 nnmm
eeeeD

A
−−

=


  ,  
( )( )

,
1 21

22

ssP

r

eeeD

P
B

r −−
=




 

  ( ) ,4
2

1 222

1 Mn +++=            ( ) ,4
2

1 222

2 Mn ++−=   

 ,4
2

1 222

1  ++= rr PPs                  222

2 4
2

1
 +−= rr PPs  

VI. Results and discussion 

We may now obtain the expression for the skin-friction components zx and is the main flow and 

transverse direction respectively, as                                                                                    

  z
dy

du

dy

du

U

a

y

x

x 



 cos

.
0

0

/









+








== 

=

 

    

( )

( )

( )

( )

( ) ( )

( ) 












−
−−





+
−−

+



+

−

−
=

 



= =

++

=

+

=

+

=

2

1

4

3 2

2

4

3

2

1 1

1
2

1

21

3

3

22

11

2121

i i i

rm

i

i

rm

i

i i

rm

i

i i

rm

i

mm
i

iimm

mr

emD

r

eD

r

eD

mr

eDm

eeD
nK

ee

mm

iii

ii








                     …(32) 

       
V

az
z

.

/




 =  = .sin

4

1

2

0

1 zrD
Ddy

dw

i

iI

y





 








−=









==

                                                          …(33) 

 We may calculate the heat transfer coefficient in terms of the Nusselt number 
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In the present study the behavior of the  .   main flow velocity decreases with the increasing 

Hartmann number (M), and injection parameter ( ).The cross flow velocity component w due to the transverse 

sinusoidal injection velocity distribution applied through out the porous plate at rest and the cross flow velocity 

profile is shown through the figure-2. Here it is observed  that while increasing the Hartmann number (M) or the 

injection parameter ( ), the velocity component w first decreasing up to the middle of channel and increases 

there after. The skin-friction components zx and
in the main flow and transverse direction, respectively, 

are presented through the figure-3. This figure shows that zx and
 decrease with increasing  . It is also 

noticed that with increasing Hartmann number (M), the skin- friction component x decrease, however, z  

increases. The rate of heat transfer coefficient at stationary porous plate in terms of the Nusselt number is shown 

through the figure-4. The value of prandtl number Pr are chosen as 0.7 and 7 approximately which represent air 

and water respectively at 200c. The Nusselt number is also observed to be decreasing with the injection/section 

parameter 

VII. Conclusion 

We conclude by graphically as  

• figure-1 it is clear that the main flow velocity decreases with the increasing Hartmann number M, and 

injection parameter .The cross flow velocity component w due to the transverse sinusoidal injection velocity 

distribution applied through out the porous plate at rest.  

• The cross flow velocity profile is shown through the figure-2. Here it is observed from this figure that 

while increasing the Hartmann number (M) or the injection parameter (  ), the velocity component w first 

decreasing up to the middle of channel and increases thereafter. 

• The skin-friction components zx and in the main flow and transverse direction, respectively, are 

presented through the figure-3. This figure shows that zx and  decrease with increasing  . It is also noticed 

that with increasing Hartmann number (M), the skin- friction component x decrease, however, z  increases. 

• The rate of heat transfer coefficient at stationary porous plate in terms of the Nusselt number is shown 

through the figure-4. The value of prandtl number Pr are chosen as 0.7 and 7 approximately which represent air 

and water respectively at 200c. The Nusselt number is also observed to be decreasing with the injection/section 

parameter  .    
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fig -1.   Main flow velosity profile for z=0
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fig.-2 cross flow velosity profile for z=.5
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fig.-3 main flow and transvers components of skin 
friction for z= 0 and z= .5 
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