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Abstract

In this study for Magnetohydrodynamic (MHD) Couette flow incorporating the effects of transpiration cooling,

which consists the problem of a Couette flow between two horizontal parallel porous flat plate of an electrically
conducting viscous incompressible fluid. The stationary plate is subjected to a transverse sinusoidal injection of
the fluid and its corresponding removal by constant suction through the other plate, in uniform motion and
because of injection velocity the flow becomes three-dimensional. a magnetic field of uniform strength is also
applied normal to the planes of the plates. the effect of injection/suction velocity and the magnetic field on the
flow field, skin friction and heat transfer are reported and discussed in detail in graphically.
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I.  Introduction

Transpiration cooling, achieved by the injection or suction of fluid through a porous surface, is an
effective thermal control technique widely used in high-temperature environments such as gas turbines, nuclear
reactors, aerospace structures, and electronic cooling systems. The interaction between transpiration effects and
non-Newtonian fluid behavior significantly alters the velocity and temperature distributions, making
mathematical modeling essential for accurate prediction and design.

Bansal and Jain (1973) discussed about on the plane couette flow of a viscous compressible fluid with
transpiration cooling with exact solution for the plane couette flow of a viseous compressible, heat conducting,
perfect gas with the same gas injection at the stationary plate and its corresponding removal at the moving plate
has been studied. They found that the gas injection is very helpful in reducing the temperature recovery factor.
Effects of injection on the shearing stress at the lower plate, longitudinal velocity proj and the enthalpy arr
shown graphically. Gersten and Gross (1974) studied on the three dimensional convective flow and heat transfer
through a porous medium, while Gulab and Mishra (1977) expressed an idea through the equation of motion for
MHD flow. Raptis (1983) worked on the free convective flow through a porous medium bonded by the infinite
vertical plate with oscillating plate temperature and constant suction, and again Raptis and Perdikis (1985)
further worked on the free convective flow through a highly porous medium bounded by the infinite vertical
porous plate with constant suction. Although in above studies the investigators have restricted themselves to
two-dimensional flows, but there may arise situations, where the flow field may be essentially three-
dimensional. Therefore Singh (1991) worked on three dimensional MHD flow past a porous plate, and again
Singh (1993) also worked in the same direction and studied the problem of three dimensional viscous flow and
heat transfer along a porous plate. Again Ahmed and Sharma (1997) discussed about the three-dimensional free
convective flow of an incompressible viscous fluid through a porous medium with uniform free steam velocity,
while Singh (1999) again studied about a three-dimensional Couette flow with transpiration cooling by applying
transverse sinusoidal injection velocity at the stationary plate velocity. Kim (2000) discussed the unsteady MHD
convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, and Kamel
(2001) discussed about the unsteady MHD convection through porous medium with combined heat and mass
transfer with heat source/sink. Kumar et al (2004) discussed about the Hall current on MHD free- convection
flow through porous media past a semi-infinite vertical plate with mass transfer, while Muhammad et al (2005)
discussed the effects of Hall current and heat transfer on the flow due to a pull of eccentric rotating. Attia (2006)
observed the unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties..

Here our main motto flow velocity decreases with the increasing Hartmann number (M), and injection

parameter (’1 ).The cross flow velocity component w due to the transverse sinusoidal injection velocity
distribution applied through out the porous plate at rest and the cross flow velocity profile is shown by

graphically, while increasing the Hartmann number (M) or the injection parameter ( A ), the velocity component
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w first decreasing up to the middle of channel and increases there after. The skin-friction components

T andrt, . . L .
x 2 in the main flow and transverse direction, respectively.

II.  Basic equations

Consider a coordinate system with plate lying vertically on x-z plane such that x- axis is taken along the
plate in the direction of flow and y- axis is perpendicular to the plane of the plate and direction into the fluid
which is flowing with free stream velocity U and the lower plate is to have a transverse sinusoidal injection

velocity of the form

Vi(z')= V(l + gcoszj

a
The problem is governed by the following non dimensional equations:
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Here the non-dimensional variables are:
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The boundary conditions to this problem in dimensionless form are as:

u=0,v(z)=1+¢ecosmz, w=0, T =0, for y=0.

u=1, v=1, w=0, T=1, fory=1.
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III. Mathematical Analysis
As we know that the amplitude of injection velocity € is very smalls therefore we can assume the
following form the solutions

fnz)=£,0)+ o z)+ e f,(0,2) + . (9

When & = 0, the problem reduces to two-dimensional then the solution of this two dimensional problem is

”o(y)Zﬁ, w=0, ... (10
1 t t 1+t 1+,
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when € # 0, in equation (9) then Substituting in to the equations (2) to (6) and comparing the coefficient of

identical powers of &, and neglecting the coefficient g’ , & etc. The following first order equations obtained:
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The corresponding boundary conditions are;
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u, =0, v, =cosmz, w, =0, T, =0, fory=0.

...(18)
u, =0, v, =0, w, =0, T, =0 fory=1.
IV.  Cross flow solution
For cross flow solution we assume the following form of v; w;and p; :
v (y,z) =v, (y)cosnz.
1 .
w,(y,z)= ——v.(y)sin zz.
4 ...(19)

p(».2)= p.(y)coszz.

where the * denote the differentiation with respect to y. Substituting equation (19) in equations (15) and (16).
We get the following ordinary differential equations.

v = —a’v, =Ap!. ~(20)
WV~ MR = Ax .. 2D

Now using the transformed boundary conditions the equations (20) and (21) obtained in the following form

(y, D(ZD e”jcosoz ...(22)

i=1

wl(y,z):—%[iDirie”'y]sinm. .(23)

T\ =1

P (y, )JZZD [iD [{r - A’ (7[2 +M2)rl.}e”’y ]} cosmz ..(24)
i=1

where

[pl+1/p1 +4r° ] l[pl \/pl +4r° ]

1 1
r3:5[p2+1/p22+472'2], r4:5[p2—1/p§+472'2],

D= {(r2 -n )(r1 —-n )(e“’z +etth )}
+ {(r3 -7, )(r1 -, )(6”2”3 +elt )}+ {(rz -7, )(r3 -7 )(e“”‘ +eh )}
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V. Main flow solution

We consider the equations of the main flow component ul(y,z) and temperature field Tl(y,Z), in the

following form:

ul(y,z):u*(y)cosm ...(25)

Tl(y,Z)ZT*(y)COSﬂZ ...(26)

Substituting these values in equations (14) and (17) respectively. We obtain the ordinary differential equations

in the following form:
u! — Aul — (7[2 +M2)u* = Av,u; ..(27)
—AP.T! - 7°T,, = APv,T, ...(28)
The corresponding boundary conditions are;

u, =0, 7,=0, for y=0.

.29
u,=0, 7,=0, for y=1.

using the boundary condition (29) and equations (25) and (26) in the equations (27) and (28), we get

(m+r)y 4 (ml +1)y

A 2 m,D,e
. —emz){z r,(3m, — 4 Z

...(30)
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i=1 T; =3 7

...(31)
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where
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VI. Results and discussion

We may now obtain the expression for the skin-friction components 7 andt_ is the main flow and

transverse direction respectively, as

rla (duOJ (du* j
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We may calculate the heat transfer coefficient in terms of the Nusselt number
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Nu=—3¢ :[dToj +g(ﬂ] cosz
Kr-1,) \av ), \dv)
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In the present study the behavior of the A . main flow velocity decreases with the increasing

Hartmann number (M), and injection parameter ( A ).The cross flow velocity component w due to the transverse
sinusoidal injection velocity distribution applied through out the porous plate at rest and the cross flow velocity
profile is shown through the figure-2. Here it is observed that while increasing the Hartmann number (M) or the
injection parameter (/1 ), the velocity component w first decreasing up to the middle of channel and increases

t.andt, . : o .
x Z in the main flow and transverse direction, respectively,

and

there after. The skin-friction components
. T T cq - . .
are presented through the figure-3. This figure shows that ~~ Z decrease with increasing A . It is also

noticed that with increasing Hartmann number (M), the skin- friction component L decrease, however, ¥
increases. The rate of heat transfer coefficient at stationary porous plate in terms of the Nusselt number is shown
through the figure-4. The value of prandtl number P; are chosen as 0.7 and 7 approximately which represent air
and water respectively at 20°%. The Nusselt number is also observed to be decreasing with the injection/section
parameter

VII.  Conclusion
We conclude by graphically as
L figure-1 it is clear that the main flow velocity decreases with the increasing Hartmann number M, and
injection parameter A .The cross flow velocity component w due to the transverse sinusoidal injection velocity
distribution applied through out the porous plate at rest.
L The cross flow velocity profile is shown through the figure-2. Here it is observed from this figure that
while increasing the Hartmann number (M) or the injection parameter ( A ), the velocity component w first

decreasing up to the middle of channel and increases thereafter.

° The skin-friction components 7, and t . in the main flow and transverse direction, respectively, are
presented through the figure-3. This figure shows that 7 andt . decrease with increasing A .1t is also noticed

that with increasing Hartmann number (M), the skin- friction component 7, decrease, however, 7, increases.

L The rate of heat transfer coefficient at stationary porous plate in terms of the Nusselt number is shown
through the figure-4. The value of prandtl number P; are chosen as 0.7 and 7 approximately which represent air

and water respectively at 20°. The Nusselt number is also observed to be decreasing with the injection/section

parameter A .
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