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Abstract

A cone metric space generalizes the conventional notion of a metric space by introducing distance measure
within a real Banach space, E where a subset P C E satisfying the properties of a cone governs the structure of
the metric. In the present study, the cone metric is formulated such that the cone P C R? comprises vectors with
non-negative components. A rigorous verification established that the space (R? d) satisfies the fundamental
axioms of a cone metric, namely positivity, symmetry, and the triangle inequality. Furthermore, the study
investigates the numerical approximation of the convergence of an iterative sequence generated by a
generalized Lipschitzian mapping, the simulation results demonstrate that the sequence {x,}nso converges
rapidly to a unique fixed point of the corresponding contraction mapping. This finding substantiates the
theoretical construction of fixed point results in cone metric spaces and highlights their applicability in
analyzing the stability and convergence behaviours of iterative processes.
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I. Introduction And Preliminaries
Let E always be a real Banach space and P a subset of E, then following Okeke (2019) [1] and Ilic,
Rakocevic (2009) [2], Rezapour and Hamlbarani (2008) [3], P is called a cone if and only if:
(1) P is closed, nonempty, and P # {0}
(i) {0,1} c P
(ii)a,beR,a,b> 0,x,yeP =>ax + byeP
(ivyxeP,—xeP =>x = 0.

Several studies have employed analytical methods alongside software tools such as SPSS and
MATLAB for the analysis and interpretation of modelling results. For example, Okeke (2020) [4], Okeke and
Akpan (2019) [5], and Okeke and Ifeoma (2024; 2023) [6], [7] examined various modelling approaches applied
to physical phenomena and the sensitivity of coronavirus disparities in Nigeria. Okeke et al. (2019) [8] utilized
analytical theorems, including the fixed point theorem.

Okeke and Peters (2019) [9] emphasized numerical stability in physical flow applications using
Software-assisted analysis tool. The principle of maximum was analytically applied to establish the uniqueness
of solutions in metric spaces involving second-order linear Volterra integral equations.

Moreover, Okeke and Nwokolo (2025) [10] applied modelling techniques to healthcare patient
scenarios, while Okeke et al. (2019) [11] used MATLAB for modelling and analyzing the dynamics of HIV
infection. Okeke (2025) [12] used Quality Management (QM) software to solve innovative mathematical
application of game theory to healthcare allocation problem.

Huang and Zhang (2007) [13] introduced cone metric spaces as an extension of conventional metric
spaces. In a cone metric space X, the distance d(x,y) between two elements x and y is defined as a vector in an
ordered Banach space E. A mapping T: X — X is called contractive if there exists a constant k € [0,1) such
that d(Tx,Ty) < kd(x,y) V x,y € X (Khojasteh et al., 2015) [14].
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Following Chidume (2003) [15], let X be a nonempty set. Suppose the mapping d: X X X — E E satisfies:
(1).d(x,y) > Oforallx,y € X,and d(x,y) = Oifandonlyif x = y,

(i1). d(x,y) = d(y,x) forall,y € X,

(). d(x,y) < d(x,z) + d(z,y) forall x,y,z € X.

Then d is called a cone metric on X, and the pair (X, d) is called a cone metric space. It is obvious that
cone metric spaces generalize metric spaces.

In particular, let X = R and define a cone metric d: X X X » R2C E as:

dix,y) = |x — y[.(1,1) (1)
with the cone defined by: P = {(a,b) € R?>:a =0,b = 0}

II.  Verification That ( R, d) Is A Cone Metric Space
Let X = R, and define a distance function
d:X X X>R?by:d(x,y) = |x — yl.(L1D) = (Ix = yl]x =y 2
Let the cone P c R? be defined as: P = {(a,b) € R?:a = 0,b = 0}, which induces a partial order
on R? given by: (uy,u,) < (vy,v,) © v, — uy, =0and v, — uy, = 0.

We now verify the three axioms of a cone metric.

(i). Positivity

We have that: d(x,y) = (]Jx — y|,|x — y|). Since |x — y| = 0, it follows that d(x,y) € P.
Furthermore,
d(x,y) = (0,0) © |x — y| = 0 & x = y. Thus, positivity is satisfied.

(ii). Symmetry
We observe that: d(x,y) = |x — y|(1,1) = |y — x|(1,1) = d(y,x). Hence, symmetry is satisfied.

(iii). Triangle Inequality
We need to verify that: d(x,z) < d(x,y) + d(y,2z).

Computing: d(x,z) = |x — z|(1,1), d(x,y) + d(y,z) = (]Jx — y| + |y — z|)(1, 1).
By the triangle inequality in R: |x — z| < |x — y| + |y — z|.

Multiplying both sides by (1,1) € P, we get: |x — z|(1,1) < (Ix — y| + |y — z]D(1, D).
Thus, d(x,z) < d(x,y) + d(y,2z).

Triangle inequality holds with respect to the partial ordering defined by P.

Since all the three properties of a cone metric are satisfied, (X = R, d), with:
d(x,y) = |x — y|(1,1) and P = {(a,b) € R?: a = 0,b = 0} is a cone metric space.

Next, choosing the map:
T(x) = sx + 1 3)
which is a contraction with Lipschitz constant k = % <1

Next, we now show that the map T'(x) = %x + 1 is a contraction with Lipschitz constant k = %, we

need to demonstrate that there exists a constant k € (0,1) such that for all x, y in the domain, we have: |T(x) —
T < klx =yl

But:
1 1
ITCO =Tl =15x+1 -5y -1
1 1
= 7% = 2Vl “4)

1
—2|x vl
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Now, comparing |T (x) — T(y)| < k|x — y| and equation (3), then k = %

III. Methodology
This section explores an iterative process. Defining the iterative sequence {x, } by:

Xny1 =T (%)
Starting with:
Xo = 0

Then from equation (3),

X, = T@g:§.1+1=§
1 3 7
X3 = TCxZ):E.EJ’_l:Z
1 7 15
X4 =T(x3):E'Z+1:?

The fixed point is found by solving: x* = T(x*) = x* = %x* +1=>x"=2
The mapping T'(x) = %x + 1 is a contraction on R, and thus the iterative sequence
Xn+1 = T (x,) converges to the unique fixed point x* = 2 for any initial point x, € R.

Steps for Derivation of a Contraction
Step 1: Stating the definition of a contraction map

Let the mapping T : R — R be defined as: T(x) = %x + %

Let the mapping T be called a contraction if there exists a constant k € (0,1) such that: |T(x) —
TWI< kl|x —yl<Vxy €R

Step 2: Computing the Difference: |T(x) — T(y)|

But:
3 7
T(x) = X +E
3 7
Ty) = 5y+3

3 7 3 7
SIT@ =T =1 (Sx+2) = (Sy +2))
3 3 3
T -TO) = 2x -2y =2 |x —y]

Step 3: Comparing with the Contraction Condition
From the computation above, we have:

I7() = TG = = |x — vl

This matches the contraction definition with: k = 13—0

The contraction constant k for the mapping T(x) = f—ox + E istk = %

The fixed point is found by solving: x* = T(x*) = x* = %x* + g >x =2
The mapping T'(x) = f—ox + g is a contraction on R, and thus the iterative sequence
Xn4+1 = T(x,) converges to the unique fixed point x* = 2 for any initial point x, € R.

IV.  Results

This section gives the metric space with Euclidean metric. Suppose, we let (X, d) be a complete metric
space with the standard Euclidean metric d(x,y) = |x — y|, and let the function T: X — X be defined as:
T(x) = kx + cwhere 0 <k <1, then T is a generalized Lipschitzian map.

The work done by Okeke et al. (2020) [16] employed numerical simulation to determine the
concentration of the material in relation to the independent variables. Numerical simulation was used to
investigate the effect of temperature on concentration and to calculate the material's thermal diffusivity. Their
results were presented through various plots at different temperature levels.
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Hence, in the simulation for (x) = kx + c,letk = 0.6, ¢ = 2 with x, = 10 and the sequence

{x,} be defined by: x,,; = T(x,) = kx, + c. The fixed point of T satisfies x* = T(x*) = x* = ﬁ =

02—4 = 5. The computation of the sequence x,, for T(x) = 0.6x + 2.

We are given the recursive sequence:
Xn41 = T(x,) = 0.6x, + 2, with the initial condition: x,= 10.

The step-by-step computations are as follows:

xo=10,

%,=06-10+2=6+2=38,

X, =0.6-8+2=48+2=06.8,
X3=0.6-6.8+2=4.08+2=6.08,

X, =0.6-6.08+2=3.648 +2=5.648,

x5 =0.6-5.648 +2 =3.3888 +2 =5.3888,

X =0.6+5.3888 +2=323328 +2=7523328,

X7 =0.6-5.23328 +2=3.139968 + 2 = 5.139968,

xg =0.6 - 5.139968 + 2 = 3.0839808 + 2 = 5.0839808,

X9 =0.6-5.0839808 + 2 =3.05038848 + 2 = 5.05038848
X190 = 0.6 - 5.05038848 + 2 =3.03023309 + 2 = 5.03023309

Table 1: Values of x,, for successive n under a generalized Lipschitzian map defined on the given theoretical

bound
n 0 1 2 3 4 5 6 7 8 9 10
x, | 10.00000 | 8.00000 | 6.80000 | 6.08000 | 5.64800 | 538880 | 5.23328 | 5.13996 | 5.08398 | 5.05038 | 5.03023
000 000 000 000 000 000 000 800 080 848 309

n
For the theoretical Bound: d(x,,x*) < 1k_—k d(xg,%1)
In this case:
1

1
d(x, %) =10 — 8] = 2and —=—=2.5

= d(x,, x*) < 2.5 k"2 = 5k"

Numerical Simulations

The convergence behaviour of the three different iterative sequences on cone metric spaces with the
iteration of Lipschitzian Mapping are shown in the Figure 1 to Figure 3 below. The Figure 4 visualizes the
metric cone P  R? while Figure 5 shows the convergence of the sequence x,, to the fixed point x*generated by
a generalized Lipschitzian map for the function T (x).

Ti(z) =32 +1
T
9 | —— Iy
e |-~ Fixed Point 2* = 2
pl
e
1.5 =
S0 1
0.5 F / -
0 /
0 2 4 6 8 10

Iteration n

Figure 1: Plot of the iterative sequence z,, for Ty (x) = {,.r+1 with fixed point 2% = 2.
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Ty(z) = 0.8z + 0.2

1 I N S B ;F a"il L .
-~ Fixed Point z* =1
0.8 —
L
0.6 e i
04 ]
0.2} i
0 L -
0 2 4 6 8 10

Iteration n

Figure 2: Plot of the iterative sequence z,, for Ty(z) = 0.8z + 0.2 with fixed point
* = 1.

Ty(z) =03z + 14

T T I I
2 I S e —o— Ln

- Fixed Point 2* = 2 | |

4 6 3 10

Iteration n

=
()=

Figure 3: Plot of the iterative sequence x, for T3(z) = 0.3z + 1.4 with fixed point
x*t = 2.

B
1l
T

{(a,b) e R? | a > 0,b > 0}

Figure 4: Metric cone P in R? defined by nonnegative a and b.
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Convergence of the Sequence z,, to Fixed Point z* = 5 for T'(x) = 0.6z + 2

10 by

In

Iteration n

—— Sequence x,, - -- Fixed Point z* =5 |

Figure 5: Graph showing the convergence of the sequence x,, to the fixed point z* = 5
generated by a generalized Lipschitzian map for the function T(z) = 0.6z — 2.

A Contraction Theorem On The Cone Metric Space (R, d)

Theorem 1. Let X = R and define the cone metric d: X X X - R? by d(x,y) = |x — y|(1,1), with cone P
={(a,b) ER* a =0,b =0}. Let T(x) = kx + c, where k € [0,1) and ¢ € R. Then (1). T is a contraction on
(R, d) with contraction constant k, that is, d(Tx, Ty) < kd(x,y) forall x,y € R.

(2). T has a unique fixed point x* = —

1-k
(3). For any initial point x, € R the Picard iteration x,,,; = T(x,), n = 0, converges to x*. Moreover the error
admits the exact formula |x,, — x*| = k™|x, — x| and the cone-metric bound d(x,, x*) < k™d(xy, x*).

In particular the following useful estimate holds: d(x,, x*) < 1k_—k d(xg,%x1),n = 1.

Proof 1.
(1) For any x,y € R, d(Tx,Ty) = |kx+c — (ky+c)|(1,1) = |k||x—y|(1,1) = kd(x,y), so T is a
contraction with constant k € [0,1).

(2) A fixed point x* satisfies x* = kx* + c¢. Solving for x* (since 1 — k > 0) gives x* = ﬁ, and uniqueness
follows from the contraction property: if y* were another fixed point then

d(x*,y") =d(Tx*,Ty") < kd(x",y*) so (1 —k)d(x*,y") < 0 which follows that

d(x*,y*) = 0,hence x* = y™.

_rn
(3) For the affine map one can compute the closed form for the iterates: x, = k™xy + ¢ 11_kk

Subtracting x* = ﬁ yields x, —x* = k™(xy — x¥), so |x, —x*| = k™|(xq — x*)|; therefore d(x,, x*) =
[x, — x*|(1,1) = k™d(xo, x™), proving convergence since k™ —» 0 asn — +oo.

To obtain the bound with d(xg,x;) note that (xy,x1) = d(xy, Txy) = (1 — k) d(xg,x*), Wthh

rearranges to d(xy — x*) S d(xo, %1). Combining with d(x,, x™) < k™ d(xy,x™) gives d(x,,x*) < H
d(xg,x1), n =1, as requlred. ThlS validation is similar to the results of Hardy and Rogers (1973) [17],
Chidume (2009) [18]. The fixed point is unique for the contraction is strict (Rosler, 1992) [19] and Bharucha-

Reid (1976) [20].

The specific maps used in the numerical examples satisfy the theorem. Hence:
(1). Ti(x) = %x +1hask = %and fixed point x* = 2.

(ii). T, (x) = 0.8x + 0.2 has k = 0.8 and fixed point x* = 1.

(iii). T3(x) = 0.3x + 1.4 has k = 0.3 and fixed point x* = 2.

For each map, the iteration x,,,,; = T;(x,) converges geometrically to the listed x* with decay factor k.
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V.  Conclusion
The sequence x, converges rapidly to the unique fixed point x* = 2 of the contraction mapping

Ti(x) = %x + 1, in accordance with the fixed point theorems for generalized Lipschitzian maps in cone metric

spaces. The graph and simulation results presented in the work numerical simulation of iterative induced
sequence on cone metric spaces explore the behavior of iterative sequences under Lipschitzian contraction
mappings within cone metric spaces. The main focus is on demonstrating, through numerical simulation and
plots, how iterative processes can converge to unique fixed points, thereby verifying the theoretical
underpinnings of fixed point theorems in cone metric spaces.

A cone metric space generalizes the concept of traditional metric spaces by incorporating a real Banach
space E and a subset P C E that satisfies certain properties to constitute a cone. In this study, the cone metric is
defined on R with the distance function given by d(x,y) = |x — y|.(1,1). Here, the cone P c R? consists of
vectors whose components are all non-negative.

The study investigated the convergence of iterative sequences generated by mappings of the form
T(x) = ax + b, where the constants a and b ensure the function is a contraction specifically, where 0 < a <

1. According to the Banach fixed point theorem (extended to cone metric spaces), any such contraction
mapping on a complete metric space has a unique fixed point, and the iteration x,,, = T (x,,) converges to this
point.

For each mapping, the iterative sequence {x,} starts from x, = 0 and evolves by repeatedly applying
the mapping. The sequences are then plotted across 11 iterations.

The graphical plots clearly illustrate convergence behaviour:

i. For T, (x), the sequence rapidly approaches the fixed point x* = 2.

ii. For T, (x), convergence to x* = 1 is slower due to the higher contraction constant.

iii. For T5(x), convergence to x* = 2 is very rapid due to the smaller contraction constant.

The dashed red line in each graph marks the fixed point, while the blue points represent the iterative
values x,. As expected from contraction mapping theory, all sequences move monotonically toward their
respective fixed points.

The diagram above in the Figure 4 represents the metric cone P in the Euclidean plane R?, specifically
defined as: P = {(a,b) ER*> a =0,b =0}

This set includes all points in the first quadrant where both coordinates are non-negative. In the visualization:
(1). The horizontal axis is labeled a, and the vertical axis is labeled b.

(i1). The blue shaded region indicates the cone P, representing all points where a = 0 and b > 0. This includes
the positive directions of both axes starting from the origin.

(iii). Dashed lines from the origin to the points on the axes highlight the boundaries of the cone.

(iv). The origin, denoted as 0, is marked with a dot to show the vertex of the cone.

(v). A textual label within the shaded region explicitly states the definition of P.

This visualization helps to conceptualize the metric cone as a subset of R? that forms a convex region
extending infinitely in the positive a and b directions.

The Figure 5 illustrates the convergence of the sequence {x,} generated by a generalized Lipschitzian
map T(x) = 0.6x + 2. Starting from x, = 10, the sequence rapidly approaches the fixed point x* =5,
demonstrating stability and contraction under the Lipschitz condition.

The study confirms that contraction mappings defined on cone metric spaces yield sequences that
converge to unique fixed points. The speed of convergence is influenced by the magnitude of the contraction
constant k, with smaller values of k promoting faster convergence. These simulations offer visual and
numerical support for fixed point theorems in cone metric spaces and demonstrate their potential in numerical
analysis and computational mathematics.
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