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Abstract 
A cone metric space generalizes the conventional notion of a metric space by introducing distance measure 

within a real Banach space, 𝐸 where a subset 𝑃 ⊂ 𝐸 satisfying the properties of a cone governs the structure of 

the metric. In the present study, the cone metric is formulated such that the cone 𝑃 ⊂ ℝ2 comprises vectors with 

non-negative components. A rigorous verification established that the space (ℝ2, 𝑑) satisfies the fundamental 

axioms of a cone metric, namely positivity, symmetry, and the triangle inequality. Furthermore, the study 

investigates the numerical approximation of the convergence of an iterative sequence generated by a 

generalized Lipschitzian mapping, the simulation results demonstrate that the sequence {𝑥𝑛}𝑛≥0 converges 

rapidly to a unique fixed point of the corresponding contraction mapping. This finding substantiates the 

theoretical construction of fixed point results in cone metric spaces and highlights their applicability in 

analyzing the stability and convergence behaviours of iterative processes. 

Keywords: Cone metric spaces, Fixed point theorem, Generalized Lipschitzian condition, Iterative numerical 
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I. Introduction And Preliminaries 
Let E always be a real Banach space and P a subset of E, then following Okeke (2019) [1] and Ilic, 

Rakocevic (2009) [2], Rezapour and Hamlbarani (2008) [3], P is called a cone if and only if: 

(i) P is closed, nonempty, and 𝑃 ≠  {0} 

(ii) {0,1} ⊂ P 

(iii) 𝑎, 𝑏 𝜖 ℝ, 𝑎, 𝑏 ≥  0, 𝑥, 𝑦 𝜖 𝑃 ⇒ 𝑎𝑥 +  𝑏𝑦 𝜖 𝑃 

(iv) 𝑥 𝜖 𝑃, −𝑥 𝜖 𝑃 ⇒ 𝑥 =  0. 

 

Several studies have employed analytical methods alongside software tools such as SPSS and 

MATLAB for the analysis and interpretation of modelling results. For example, Okeke (2020) [4], Okeke and 

Akpan (2019) [5], and Okeke and Ifeoma (2024; 2023) [6], [7] examined various modelling approaches applied 

to physical phenomena and the sensitivity of coronavirus disparities in Nigeria. Okeke et al. (2019) [8] utilized 

analytical theorems, including the fixed point theorem. 

Okeke and Peters (2019) [9] emphasized numerical stability in physical flow applications using 

Software-assisted analysis tool. The principle of maximum was analytically applied to establish the uniqueness 

of solutions in metric spaces involving second-order linear Volterra integral equations. 

Moreover, Okeke and Nwokolo (2025) [10] applied modelling techniques to healthcare patient 

scenarios, while Okeke et al. (2019) [11] used MATLAB for modelling and analyzing the dynamics of HIV 

infection. Okeke (2025) [12] used Quality Management (QM) software to solve innovative mathematical 

application of game theory to healthcare allocation problem. 

Huang and Zhang (2007) [13] introduced cone metric spaces as an extension of conventional metric 

spaces. In a cone metric space 𝑋, the distance 𝑑(𝑥, 𝑦) between two elements 𝑥 and 𝑦 is defined as a vector in an 

ordered Banach space 𝐸. A mapping  𝑇: 𝑋 →  𝑋  is called contractive if there exists a constant 𝑘 ∈ [0,1) such 

that  𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝑘𝑑(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋 (Khojasteh et al., 2015) [14]. 
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Following Chidume (2003) [15], let 𝑋 be a nonempty set. Suppose the mapping 𝑑: 𝑋 ×  𝑋 → 𝐸 E satisfies: 

(i). 𝑑(𝑥, 𝑦)  >  0 for all 𝑥, 𝑦 ∈  𝑋, and  𝑑(𝑥, 𝑦)  =  0 if and only if  𝑥 =  𝑦, 

(ii). 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥)  for all , 𝑦 ∈  𝑋 , 

(iii). 𝑑(𝑥, 𝑦)  ≤  𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦)  for all  𝑥, 𝑦, 𝑧 ∈  𝑋. 

 

Then 𝑑 is called a cone metric on 𝑋, and the pair (𝑋, 𝑑) is called a cone metric space. It is obvious that 

cone metric spaces generalize metric spaces. 

 

In particular, let 𝑋 = ℝ and define a cone metric 𝑑: 𝑋 × 𝑋 → ℝ2 ⊆ E as: 

𝑑(𝑥, 𝑦) =  |𝑥 −  𝑦|. (1, 1)              (1) 
with the cone defined by: 𝑃 =  {(𝑎, 𝑏) ∈ ℝ2 : 𝑎 ≥ 0, 𝑏 ≥  0} 

 

II. Verification That ( ℝ, 𝑑) Is A Cone Metric Space 
Let 𝑋 =  ℝ, and define a distance function 

𝑑: 𝑋 ×  𝑋 → ℝ2 by: 𝑑(𝑥, 𝑦) =  |𝑥 −  𝑦|. (1, 1)  =  (|𝑥 −  𝑦|, |𝑥 −  𝑦|)     (2) 

Let the cone 𝑃 ⊂ ℝ2 be defined as: 𝑃 =  {(𝑎, 𝑏) ∈ ℝ2 : 𝑎 ≥ 0, 𝑏 ≥  0}, which induces a partial order 

on ℝ2 given by: (𝑢1, 𝑢2) ≤ (𝑣1, 𝑣2)  ⇔  𝑣1  −  𝑢1  ≥ 0 𝑎𝑛𝑑 𝑣2  −  𝑢2 ≥  0. 
 

We now verify the three axioms of a cone metric. 

 

(i). Positivity 

We have that: 𝑑(𝑥, 𝑦)  =  (|𝑥 −  𝑦|, |𝑥 −  𝑦|). Since |𝑥 −  𝑦|  ≥  0, it follows that 𝑑(𝑥, 𝑦) ∈ P. 

Furthermore, 

𝑑(𝑥, 𝑦)  =  (0, 0)  ⇔  |𝑥 −  𝑦|  =  0 ⇔  𝑥 =  𝑦. Thus, positivity is satisfied. 

 

(ii). Symmetry 

We observe that: 𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|(1, 1)  =  |𝑦 −  𝑥|(1, 1)  =  𝑑(𝑦, 𝑥). Hence, symmetry is satisfied. 

 

(iii). Triangle Inequality 

We need to verify that: 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧). 

 

Computing: 𝑑(𝑥, 𝑧)  =  |𝑥 −  𝑧|(1, 1), 𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧)  =  (|𝑥 −  𝑦|  + |𝑦 −  𝑧|)(1, 1). 

 

By the triangle inequality in ℝ: |𝑥 −  𝑧|  ≤  |𝑥 −  𝑦|  +  |𝑦 −  𝑧|. 
 

Multiplying both sides by (1, 1)  ∈ 𝑃, we get: |𝑥 −  𝑧|(1, 1)  ≤  (|𝑥 −  𝑦|  +  |𝑦 −  𝑧|)(1, 1). 

 

Thus, 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧). 

 

Triangle inequality holds with respect to the partial ordering defined by 𝑃. 

 

Since all the three properties of a cone metric are satisfied, (𝑋 = ℝ, 𝑑), with: 

𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|(1, 1) and 𝑃 =  {(𝑎, 𝑏)  ∈ ℝ2 ∶  𝑎 ≥ 0, 𝑏 ≥ 0} is a cone metric space. 

 

Next, choosing the map: 

𝑇(𝑥) =  
1

2
𝑥 +  1            (3) 

which is a contraction with Lipschitz constant 𝑘 =
1

2
< 1. 

Next, we now show that the map 𝑇(𝑥) =  
1

2
𝑥 +  1 is a contraction with Lipschitz constant 𝑘 =

1

2
, we 

need to demonstrate that there exists a constant 𝑘 ∈ (0,1) such that for all 𝑥, 𝑦 in the domain, we have: |𝑇(𝑥) −
𝑇(𝑦)| ≤ 𝑘|𝑥 − 𝑦| 

 

But: 

|𝑇(𝑥)  −  𝑇(𝑦)|  =  | 
1

2
𝑥 +  1 −  

1

2
𝑦 −  1| 

=  |
1

2
𝑥 −  

1

2
𝑦|                    (4) 

=  
1

2
|𝑥 −  𝑦| 
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Now, comparing |𝑇(𝑥) − 𝑇(𝑦)| ≤ 𝑘|𝑥 − 𝑦| and equation (3), then 𝑘 =
1

2
. 

 

III. Methodology 
This section explores an iterative process. Defining the iterative sequence {𝑥𝑛} by: 

𝑥𝑛+1 = 𝑇(𝑥𝑛) 

Starting with: 

𝑥0 = 0 

 

Then from equation (3), 

𝑥1 =  𝑇(𝑥0) = 
1

2
 . 0 + 1 = 1 

𝑥2 =  𝑇(𝑥1) = 
1

2
 . 1 + 1 =

3

2
 

𝑥3 =  𝑇(𝑥2) = 
1

2
 . 

3

2
 + 1 = 

7

4
 

𝑥4 = 𝑇(𝑥3) = 
1

2
 . 

7

4
 + 1 = 

15

8
 

⋮ 
 

The fixed point is found by solving: 𝑥∗ = 𝑇(𝑥∗) ⇒ 𝑥∗ =
1

2
𝑥∗ + 1 ⇒ 𝑥∗ = 2 

The mapping 𝑇(𝑥) =
1

2
𝑥 + 1 is a contraction on ℝ, and thus the iterative sequence 

𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to the unique fixed point 𝑥∗ = 2 for any initial point  𝑥0 ∈ ℝ. 

 

Steps for Derivation of a Contraction 

Step 1: Stating the definition of a contraction map 

Let the mapping 𝑇 ∶  ℝ → ℝ be defined as: 𝑇(𝑥)  =  
3

10
𝑥 +  

7

5
 

Let the mapping 𝑇 be called a contraction if there exists a constant 𝑘 ∈ (0,1) such that: |𝑇(𝑥) −
 𝑇(𝑦)| ≤  𝑘 |𝑥 −  𝑦| ≤ ∀ 𝑥, 𝑦 ∈ ℝ. 

 

Step 2: Computing the Difference:  |𝑇(𝑥)  −  𝑇(𝑦)| 
But: 

𝑇(𝑥) =  
3

10
𝑥 + 

7

5
 

𝑇(𝑦) =  
3

10
𝑦 + 

7

5
 

⇒|𝑇(𝑥) − 𝑇(𝑦)| = | (
3

10
𝑥 +

7

5
) − (

3

10
𝑦 +

7

5
) | 

|𝑇(𝑥) − 𝑇(𝑦)| = |
3

10
𝑥 −

3

10
𝑦| = 

3

10
|𝑥 − 𝑦| 

 

Step 3: Comparing with the Contraction Condition 

From the computation above, we have: 

|𝑇(𝑥) − 𝑇(𝑦)| = 
3

10
|𝑥 − 𝑦| 

This matches the contraction definition with: 𝑘 =
3

10
 

 

The contraction constant  𝑘 for the mapping 𝑇(𝑥) =
3

10
𝑥 +

7

5
 is: 𝑘 =

3

10
 

The fixed point is found by solving: 𝑥∗ = 𝑇(𝑥∗) ⇒ 𝑥∗ =
3

10
𝑥∗ +

7

5
 ⇒ 𝑥∗ = 2 

The mapping 𝑇(𝑥) =
3

10
𝑥 +

7

5
 is a contraction on ℝ, and thus the iterative sequence 

𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to the unique fixed point 𝑥∗ = 2 for any initial point  𝑥0 ∈ ℝ. 

 

IV. Results 
This section gives the metric space with Euclidean metric. Suppose, we let (𝑋, 𝑑) be a complete metric 

space with the standard Euclidean metric 𝑑(𝑥, 𝑦)  =  |𝑥 −  𝑦|, and let the function 𝑇: 𝑋 → 𝑋  be defined as: 

𝑇(𝑥)  =  𝑘𝑥 +  𝑐 where 0 ≤ k < 1, then 𝑇 is a generalized Lipschitzian map. 

The work done by Okeke et al. (2020) [16] employed numerical simulation to determine the 

concentration of the material in relation to the independent variables. Numerical simulation was used to 

investigate the effect of temperature on concentration and to calculate the material's thermal diffusivity. Their 

results were presented through various plots at different temperature levels. 
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Hence, in the simulation for (𝑥)  =  𝑘𝑥 +  𝑐 , let 𝑘 =  0.6, 𝑐 =  2 with 𝑥0  =  10 and the sequence 

{𝑥𝑛} be defined by: 𝑥𝑛+1 =  𝑇(𝑥𝑛)  =  𝑘𝑥𝑛  +  𝑐. The fixed point of 𝑇 satisfies 𝑥∗  =  𝑇(𝑥∗) ⇒  𝑥∗  =
𝑐

1−𝑘
=

2

0.4
= 5 . The computation of the sequence 𝑥𝑛 for 𝑇(𝑥) =  0.6𝑥 +  2. 

 

We are given the recursive sequence: 

𝑥𝑛+1 =  𝑇(𝑥𝑛)  =  0.6𝑥𝑛  +  2, with the initial condition: 𝑥0= 10. 

 

The step-by-step computations are as follows: 

𝑥0= 10, 

𝑥1 = 0.6 ∙ 10 + 2 = 6 + 2 = 8, 

𝑥2 = 0.6 ∙ 8 + 2 = 4.8 + 2 = 6.8, 

𝑥3 = 0.6 ∙ 6.8 + 2 = 4.08 + 2 = 6.08, 

𝑥4 = 0.6 ∙ 6.08 + 2 = 3.648 + 2 = 5.648, 

𝑥5 = 0.6 ∙ 5.648 + 2 = 3.3888 + 2 = 5.3888, 

𝑥6 = 0.6 ∙ 5.3888 + 2 = 3.23328 + 2 = 5.23328, 

𝑥7 = 0.6 ∙ 5.23328 + 2 = 3.139968 + 2 = 5.139968, 

𝑥8 = 0.6 ∙ 5.139968 + 2 = 3.0839808 + 2 = 5.0839808, 

𝑥9 = 0.6 ∙ 5.0839808 + 2 = 3.05038848 + 2 = 5.05038848 

𝑥10 = 0.6 ∙ 5.05038848 + 2 = 3.03023309 + 2 = 5.03023309 

 

Table 1: Values of 𝑥𝑛for successive 𝑛 under a generalized Lipschitzian map defined on the given theoretical 

bound 

 
 

For the theoretical Bound: 𝑑(𝑥𝑛 , 𝑥∗) ≤
𝑘𝑛

1−𝑘
𝑑(𝑥0, 𝑥1) 

In this case: 

𝑑(𝑥0, 𝑥1) = |10 − 8| = 2 and  
1

1−𝑘
=

1

0.4
= 2.5 

 

⇒ 𝑑(𝑥𝑛, 𝑥∗) ≤ 2.5 ∙ 𝑘𝑛 ∙ 2 = 5𝑘𝑛 

 

Numerical Simulations 

The convergence behaviour of the three different iterative sequences on cone metric spaces with the 

iteration of Lipschitzian Mapping are shown in the Figure 1 to Figure 3 below. The Figure 4 visualizes the 

metric cone P ⊂ ℝ2 while Figure 5 shows the convergence of the sequence 𝑥𝑛 to the fixed point 𝑥∗generated by 

a generalized Lipschitzian map for the function 𝑇(𝑥). 
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A Contraction Theorem On The Cone Metric Space (ℝ, 𝑑) 

 

Theorem 1. Let 𝑋 = ℝ and define the cone metric 𝑑: 𝑋 × 𝑋 → ℝ2 by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|(1,1), with cone 𝑃 

= {(𝑎, 𝑏) ∈ ℝ2: 𝑎 ≥ 0, 𝑏 ≥ 0}. Let 𝑇(𝑥) = 𝑘𝑥 + 𝑐, where 𝑘 ∈ [0,1) and 𝑐 ∈ ℝ. Then (1). 𝑇 is a contraction on 

(ℝ, 𝑑) with contraction constant 𝑘, that is, 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ ℝ. 

(2).  𝑇 has a unique fixed point 𝑥∗ =
𝑐

1−𝑘
. 

(3). For any initial point 𝑥0 ∈ ℝ the Picard iteration 𝑥𝑛+1 = 𝑇(𝑥𝑛), 𝑛 ≥ 0, converges to 𝑥∗. Moreover the error 

admits the exact formula |𝑥𝑛 − 𝑥∗|  =  𝑘𝑛|𝑥0 − 𝑥∗| and the cone-metric bound 𝑑(𝑥𝑛 , 𝑥∗) ≤ 𝑘𝑛𝑑(𝑥0, 𝑥∗). 

In particular the following useful estimate holds: 𝑑(𝑥𝑛 , 𝑥∗) ≤
𝑘𝑛

1−𝑘
𝑑(𝑥0, 𝑥1), 𝑛 ≥ 1. 

 

Proof 1. 

(1) For any 𝑥, 𝑦 ∈ ℝ, 𝑑(𝑇𝑥, 𝑇𝑦)  =  |𝑘𝑥 + 𝑐 −  (𝑘𝑦 + 𝑐)|(1,1)  =  |𝑘||𝑥 − 𝑦|(1,1)  =  𝑘𝑑(𝑥, 𝑦), so 𝑇 is a 

contraction with constant 𝑘 ∈ [0,1). 

 

(2) A fixed point 𝑥∗ satisfies 𝑥∗ = 𝑘𝑥∗ + 𝑐. Solving for 𝑥∗ (since 1 − 𝑘 > 0) gives 𝑥∗ =
𝑐

1−𝑘
, and uniqueness 

follows from the contraction property: if 𝑦∗ were another fixed point then 

𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗, 𝑇𝑦∗) ≤ 𝑘𝑑(𝑥∗, 𝑦∗) so (1 − 𝑘)𝑑(𝑥∗, 𝑦∗) ≤ 0 which follows that 

𝑑(𝑥∗, 𝑦∗) = 0, hence 𝑥∗ = 𝑦∗. 

 

(3) For the affine map one can compute the closed form for the iterates: 𝑥𝑛 = 𝑘𝑛𝑥0 + 𝑐
1−𝑘𝑛

1−𝑘
. 

Subtracting 𝑥∗ =
𝑐

1−𝑘
 yields 𝑥𝑛 − 𝑥∗ = 𝑘𝑛(𝑥0 − 𝑥∗), so |𝑥𝑛 − 𝑥∗| = 𝑘𝑛|(𝑥0 − 𝑥∗)|; therefore 𝑑(𝑥𝑛 , 𝑥∗) =

|𝑥𝑛 − 𝑥∗|(1,1) = 𝑘𝑛𝑑(𝑥0, 𝑥∗), proving convergence since 𝑘𝑛 → 0 as 𝑛 → +∞. 

 

To obtain the bound with 𝑑(𝑥0, 𝑥1) note that (𝑥0, 𝑥1) = 𝑑(𝑥0, 𝑇𝑥0) ≥ (1 − 𝑘) 𝑑(𝑥0, 𝑥∗), which 

rearranges to 𝑑(𝑥0 − 𝑥∗) ≤
1

1−𝑘
 𝑑(𝑥0, 𝑥1). Combining with 𝑑(𝑥𝑛 , 𝑥∗) ≤ 𝑘𝑛 𝑑(𝑥0, 𝑥∗) gives 𝑑(𝑥𝑛 , 𝑥∗) ≤

𝑘𝑛

1−𝑘
 

𝑑(𝑥0, 𝑥1), 𝑛 ≥ 1, as required. This validation is similar to the results of Hardy and Rogers (1973) [17], 

Chidume (2009) [18]. The fixed point is unique for the contraction is strict (Rosler, 1992) [19] and Bharucha-

Reid (1976) [20]. 

 

The specific maps used in the numerical examples satisfy the theorem. Hence: 

(i). 𝑇1(𝑥) =
1

2
𝑥 + 1 has 𝑘 =

1

2
 and fixed point 𝑥∗ = 2. 

(ii). 𝑇2(𝑥) = 0.8𝑥 + 0.2 has 𝑘 = 0.8 and fixed point 𝑥∗ = 1. 

(iii). 𝑇3(𝑥) = 0.3𝑥 + 1.4 has 𝑘 = 0.3 and fixed point 𝑥∗ = 2. 

 

For each map, the iteration 𝑥𝑛+1 = 𝑇𝑖(𝑥𝑛) converges geometrically to the listed 𝑥∗ with decay factor 𝑘. 
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V. Conclusion 
The sequence 𝑥𝑛 converges rapidly to the unique fixed point 𝑥∗ = 2  of the contraction mapping 

𝑇1(𝑥) =
1

2
𝑥 + 1, in accordance with the fixed point theorems for generalized Lipschitzian maps in cone metric 

spaces. The graph and simulation results presented in the work numerical simulation of iterative induced 

sequence on cone metric spaces explore the behavior of iterative sequences under Lipschitzian contraction 

mappings within cone metric spaces. The main focus is on demonstrating, through numerical simulation and 

plots, how iterative processes can converge to unique fixed points, thereby verifying the theoretical 

underpinnings of fixed point theorems in cone metric spaces. 

A cone metric space generalizes the concept of traditional metric spaces by incorporating a real Banach 

space E and a subset P ⊂ E that satisfies certain properties to constitute a cone. In this study, the cone metric is 

defined on ℝ with the distance function given by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. (1,1). Here, the cone P ⊂ ℝ2 consists of 

vectors whose components are all non-negative. 

The study investigated the convergence of iterative sequences generated by mappings of the form 

𝑇(𝑥) = 𝑎𝑥 + 𝑏, where the constants 𝑎 and 𝑏 ensure the function is a contraction specifically, where 0 <  𝑎 <
 1. According to the Banach fixed point theorem (extended to cone metric spaces), any such contraction 

mapping on a complete metric space has a unique fixed point, and the iteration 𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to this 

point. 

For each mapping, the iterative sequence {𝑥𝑛} starts from 𝑥0 = 0 and evolves by repeatedly applying 

the mapping. The sequences are then plotted across 11 iterations. 

 

The graphical plots clearly illustrate convergence behaviour: 

i. For 𝑇1(𝑥), the sequence rapidly approaches the fixed point 𝑥∗ = 2. 

ii. For 𝑇2(𝑥), convergence to 𝑥∗ = 1 is slower due to the higher contraction constant. 

iii. For 𝑇3(𝑥), convergence to 𝑥∗ = 2  is very rapid due to the smaller contraction constant. 

 

The dashed red line in each graph marks the fixed point, while the blue points represent the iterative 

values 𝑥𝑛. As expected from contraction mapping theory, all sequences move monotonically toward their 

respective fixed points. 

The diagram above in the Figure 4 represents the metric cone 𝑃 in the Euclidean plane ℝ2, specifically 

defined as: 𝑃 = {(𝑎, 𝑏) ∈ ℝ2: 𝑎 ≥ 0, 𝑏 ≥ 0} 

 

This set includes all points in the first quadrant where both coordinates are non-negative. In the visualization: 

(i). The horizontal axis is labeled 𝑎, and the vertical axis is labeled 𝑏. 

(ii). The blue shaded region indicates the cone 𝑃, representing all points where 𝑎 ≥ 0 and 𝑏 ≥ 0. This includes 

the positive directions of both axes starting from the origin. 

(iii). Dashed lines from the origin to the points on the axes highlight the boundaries of the cone. 

(iv). The origin, denoted as 0, is marked with a dot to show the vertex of the cone. 

(v). A textual label within the shaded region explicitly states the definition of 𝑃. 

 

This visualization helps to conceptualize the metric cone as a subset of ℝ2 that forms a convex region 

extending infinitely in the positive 𝑎 and 𝑏 directions. 

The Figure 5 illustrates the convergence of the sequence {𝑥𝑛} generated by a generalized Lipschitzian 

map 𝑇(𝑥) = 0.6𝑥 + 2. Starting from 𝑥0 = 10, the sequence rapidly approaches the fixed point 𝑥∗ = 5, 

demonstrating stability and contraction under the Lipschitz condition. 

The study confirms that contraction mappings defined on cone metric spaces yield sequences that 

converge to unique fixed points. The speed of convergence is influenced by the magnitude of the contraction 

constant 𝑘, with smaller values of 𝑘 promoting faster convergence. These simulations offer visual and 

numerical support for fixed point theorems in cone metric spaces and demonstrate their potential in numerical 

analysis and computational mathematics. 
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