Rough Precompactness On Topological Simple Rough Groups

P. Tamilarasi And R. Selvi

Research Scholar (Reg. No: 22211202092003), Department Of Mathematics, Sri Parasakthi College For Women, Courtallam – 627 802, Affiliated To Manonmaniam Sundaranar University, Tirunelveli – 627 012.

Associate Professor, Department Of Mathematics, Sri Parasakthi College For Women, Courtallam – 627 802, Affiliated To Manonmaniam Sundaranar University, Tirunelveli – 627 012.

Abstract:

In this paper, we introduce a new definition of rough precompact in topological simple rough groups. We develop the fundamental properties of this concept and examine its relationship to compactness and rough complete. Further we investigate how this concept behaves under rough subgroup and product topology.

Keyword: Topological simple rough groups, Rough filter, Rough ultrafilter, Rough complete, Rough precompact.

Date of Submission: 24-10-2025

Date of Acceptance: 04-11-2025

Date of Submission. 24-10-2025

I. Introduction

The rough set theory, initially proposed by Pawlak (1982), has been utilized as an effective mathematical tool for modeling and processing incomplete information. In recent years, rough sets have been integrated with various mathematical theories such as algebra and topology. In 1994, Biswas and Nanda introduced the concept of rough group and rough subgroups, which are based on upper approximation and are independent of lower approximation. Miao et al. have enhanced the definitions of rough group and rough subgroup, and have demonstrated their new properties. Conversely, Kuroki and Wang outlined certain properties of lower and upper approximations in relation to the normal subgroups in 1996. Bagirmaz et al. (2016) proposed the concept of topological rough groups, expanding the idea of a topological group to encompass the algebraic structures of rough groups.

Precompactness is a fundamental concept in topology, particularly in the study of topological groups, it plays a crucial role in understanding the behavior of group actions, completeness and compactness. In this paper, we introduce our new definition "rough precompact" in topological simple rough group and examine its basic properties. Also, we investigate how this notion interacts with rough complete and study its behavior under rough subgroups and product constructions.

II. Preliminaries

Definition 2.1.[3] Let K = (U, R) be an approximation space and * be a binary operation defined on U. A subset G of universe U is called a rough group if the following properties are satisfied:

- (i) $\forall x, y \in G, x*y \in \overline{G}$;
- (ii) Association property holds in \overline{G} ;
- (iii) $\exists e \in \overline{G}$ such that $\forall x \in G$, x*e = e*x = x; e is called the rough identity element of rough group G;
- (iv) $\forall x \in G$, $\exists y \in G$ such that x*y = y*x = e; y is called the rough inverse element of x in G;

Definition 2.2.[8] A topological rough group is a rough group (G, *) together with a topology T on \overline{G} satisfying the following two properties:

- (i) the mapping $f: G \times G \to \overline{G}$ defined by f(x, y) = xy is continuous with respect to product topology on $G \times G$ and the topology T_G on G induced by T,
- (ii) the inverse mapping $g: G \to G$ defined by $g(x) = x^{-1}$ is continuous with respect to the topology T_G on G induced by T.

Definition 2.3.[10] A rough group G_{\Re} is called a simple rough group if it contains no proper non-trivial rough normal subgroups.

That is, G_{\Re} has only the rough normal subgroups $\{e\}$ and G_{\Re} .

Definition 2.4.[10] A topological simple rough group is a simple rough group $(G_{\Re}, *)$ together with a topology $\bar{\tau}$ on $\overline{G_{\Re}}$ satisfying the following two properties:

- (i) The mapping f: $G_{\Re} \times G_{\Re} \to \overline{G_{\Re}}$ defined by f(x, y) = xy, $x, y \in G_{\Re}$ is continuous with respect to the product topology on $G_{\Re} \times G_{\Re}$ and the topology τ on G_{\Re} induced by $\overline{\tau}$
- (ii) The inverse mapping g: $G_{\Re} \to G_{\Re}$ defined by $g(x) = x^{-1}$, $x \in G_{\Re}$ is continuous with respect to the topology τ on G_{\Re} induced by $\bar{\tau}$.

Definition 2.5.[12] A Rough filter on a topological simple rough group $G_{\mathfrak{R}}$ is a family \mathcal{F} of non-empty subsets of $\overline{G_{\mathfrak{R}}}$ satisfying the following conditions:

- (i) if U and V are in \mathcal{F} , then $U \cap V \in \mathcal{F}$;
- (ii) if $U \in \mathcal{F}$ and $U \subseteq V \subseteq \overline{G_{\Re}}$, then $V \in \mathcal{F}$.

Definition 2.6.[12] A rough filter \mathcal{F} is called a rough cauchy filter on a topological simple rough group $G_{\mathfrak{R}}$ if for every open neighborhood U of an identity element e in $\overline{G_{\mathfrak{R}}}$, there exists elements $x, y \in \overline{G_{\mathfrak{R}}}$ and $F_1, F_2 \in \mathcal{F}$ such that $F_1 \subseteq xU$ and $F_2 \subseteq Uy$.

In other words, a rough filter \mathcal{F} in a topological simple rough group $G_{\mathfrak{R}}$ is called a rough cauchy filter if for each open neighborhood U of e in $\overline{G_{\mathfrak{R}}}$, there is an element $F \in \mathcal{F}$ such that $FF^{-1} \subseteq U$.

Definition 2.7.[12] A topological simple rough group G_{\Re} is rough complete if every rough cauchy filter on G_{\Re} converges.

Theorem 2.8.[3] A necessary and sufficient condition for a subset H of rough group G to be a rough subgroup is that:

- (i) $\forall x, y \in H, x*y \in \overline{G}$;
- (ii) $\forall x \in H, x^{-1} \in H$.

Proposition 2.9.[10] Let G_{\Re} be a topological simple rough group. If $U \subseteq \overline{G_{\Re}}$ is an open set with $e \in U$, then there exists a symmetric open set V of e in G_{\Re} such that $VV \subseteq U$.

Lemma 2.10.[11] Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$ and W be a neighbourhood of e in $\overline{G_{\Re}}$. Then there is an open set U of e in G_{\Re} such that $U \subseteq U^n \subseteq W$, for every $n \in \mathbb{N} - \{0\}$.

Theorem 2.11.[12] Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$. Then the product $\prod_{i \in I} G_{\Re}^{(i)}$ is rough complete, where $G_{\Re}^{(i)}$ are rough complete groups.

Theorem 2.12.[4] A topological space X is compact iff every ultrafilter on X is convergent.

Throughout this paper, we consider X be the universal set, G_{\Re} be a simple rough group with identity e and $\overline{G_{\Re}}$ be the upper rough approximation of G_{\Re} . Also, the corresponding topologies are denoted by $\overline{\tau}$ for $\overline{G_{\Re}}$ and τ for G_{\Re} induced from $\overline{\tau}$.

III.Rough Precompact

Definition 3.1. A subset S of a topological simple rough group $G_{\mathfrak{R}}$ is rough precompact in $G_{\mathfrak{R}}$ if for every identity neighborhood $V \subseteq \overline{G_{\mathfrak{R}}}$, there exists a finite set $K \subseteq \overline{G_{\mathfrak{R}}}$ such that $S \subseteq KV$ and $S \subseteq VK$.

Lemma 3.2. Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$. Let $P \subseteq \overline{G_{\Re}}$ be a rough precompact subset and $D \subseteq \overline{G_{\Re}}$ be a dense subset of P. Then, for every identity neighbourhood $U \subseteq \overline{G_{\Re}}$, there exists a finite set $A \subseteq D$ such that $P \subseteq AU$ and $P \subseteq UA$.

Proof: Let U be an identity neighbourhood in $\overline{G_{\mathfrak{R}}}$. Then there exists a symmetric identity neighborhood $V \subseteq G_{\mathfrak{R}}$, such that $VV \subseteq U$. Since $G_{\mathfrak{R}}$ is open in $\overline{G_{\mathfrak{R}}}$, V is open in $\overline{G_{\mathfrak{R}}}$ and $VV \subseteq U$. Since P is a rough precompact, there exists a finite set K in $\overline{G_{\mathfrak{R}}}$ such that

 $P \subseteq KV$ and $P \subseteq VK$.

Let $x \in K$ and $P \cap xV \neq \emptyset$. Since D is a dense subset of P, $D \cap xV \neq \emptyset$. Then we can choose a point $y \in D \cap xV$. That is, $y \in D$ and $y \in xV$ which implies y = xv, for some $v \in V$. Now consider the finite set, $A_1 = \{y_x : x \in K \text{ and } P \cap xV \neq \emptyset\}$.

Since K is a finite set and D is a dense in P, A_1 is a finite set contained in D. Let $b \in P \subseteq KV$. Then b = xv, for some $x \in K$ and $v \in V$. Also, $y_x = xv \in S$ and $y_x^{-1} = v^{-1}x^{-1}$. That is,

 $y_x^{-1}x = v^{-1} \in V^{-1} = V$,

V is a symmetric neighborhood, and

 $b = xv = (y_xv^{-1})v = y_x(v^{-1}v) \in y_xVV \subseteq y_xU$

which implies $b \in A_1U$. Therefore, $P \subseteq A_1U$. Similarly, we can prove $P \subseteq UA_2$, where

 $A_2 = \{z_x : x \in K \text{ and } P \cap Vx \neq \emptyset\} \text{ and } z_x \in D \cap Vx.$

Suppose $A = A_1 \cap A_2 \subseteq D$. Then $P \subseteq AU$ and $P \subseteq UA$.

Proposition 3.3. Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$. If G_{\Re} is a rough precompact, then every rough subgroup H_{\Re} of G_{\Re} is a precompact topological group.

Proof: Let U be an identity neighbourhood in H_{\Re} . Then there exists an identity neighbourhood V in G_{\Re} such that $V \cap H_{\Re} \subseteq U \cap H_{\Re}$. Since G_{\Re} is rough precompact, the rough subgroup H_{\Re} is rough precompact. Then by lemma 3.2, there exists a finite subset $A \subseteq H_{\Re}$ such that

 $H_{\Re} \subseteq A(V \cap H_{\Re})$ and $H_{\Re} \subseteq (V \cap H_{\Re})A$.

Since $V \cap H_{\Re} \subseteq V$ and $A \subseteq H_{\Re} \subseteq G_{\Re}$, $H_{\Re} \subseteq AV$ and $H_{\Re} \subseteq VA$. Consider an element $xh \in H_{\Re}$. Then $h \in AV$, so, h = av, for some $a \in A$ and $v \in V$. But we prove $h \in AU$, that is, we enough to prove that $v \in U$. Since H_{\Re} is a rough subgroup of G_{\Re} and

 $h=av, v=a^{-1}h\in V\cap H_{\Re}\subseteq U\cap H_{\Re}\subseteq U.$

Therefore, $v \in U$, that is $h \in AU$ which implies $H_{\Re} \subseteq AU$. Similarly, $H_{\Re} \subseteq UA$. Hence, H_{\Re} is a precompact topological group.

Proposition 3.4. Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$. Let S be a subset of G_{\Re} contains a dense rough precompact subset. Then S is a rough precompact in G_{\Re} .

Proof: Let S be a subset of G_{\Re} and D be a dense rough precompact subset of S. Let U be an identity open neighbourhood of $\overline{G_{\Re}}$. Then there exists a symmetric identity open neighbourhood V of $\overline{G_{\Re}}$ such that $VV \subseteq U$. Since D is a rough precompact subset of S, there exists a finite subset of F of $\overline{G_{\Re}}$ such that $D \subseteq FV$ and $D \subseteq VF$.

Let $x \in S$. Then $D \cap xV \neq \emptyset$. So, consider an element $y \in D \cap xV$, that is $y \in D$ and $y \in xV$. Since $D \subseteq FV$, $y \in fV$, for some $f \in F$. But $y \in xV$ implies

 $x \in yV^{-1} \subseteq fVV^{-1} \subseteq fU$.

Therefore, $S \subseteq FU$. Similarly, $S \subseteq UF$. Hence S is a rough precompact subset of G_{\Re} .

Proposition 3.5. Let G_{\Re} be a topological simple rough group such that G_{\Re} is open in $\overline{G_{\Re}}$. Suppose A is a rough precompact subset of $\overline{G_{\Re}}$. Then there exists an identity neighborhood $V \subseteq \overline{G_{\Re}}$ such that $aVa^{-1} \subseteq W$, for every open neighborhood W of e in $\overline{G_{\Re}}$ and $a \in A$.

Proof: Let W be a neighborhood of e in $\overline{G_{\Re}}$. From lemma 2.12, there is an open set U of e in G_{\Re} such that $U \subseteq U^n \subseteq W$, for every $n \in \mathbb{N} - \{0\}$.

Since A is rough precompact, there exists a finite set $F \subseteq A$ such that

 $A \subseteq UF$ and $A \subseteq FU$.

Consider $V = \bigcap_{x \in F} x^{-1} W x$ is an identity open neighborhood in G_{\Re} . Now we choose an element $a \in A$ such that a = ux, for some $u \in U$ and $x \in F$. Hence,

 $aVa^{-1} = uxVx^{-1}u^{-1} \subseteq uUu^{-1} \subseteq U^3 \subseteq W$, for any $a \in A$.

Proposition 3.6. If A is a closed rough precompact subset of a rough complete topological simple rough group G_{\Re} , then the subset A is compact.

Proof: Let \mathcal{F}' be a rough ultrafilter on the set A. Consider a rough ultrafilter \mathcal{F} on $G_{\mathfrak{R}}$ such that $\mathcal{F}' \subseteq \mathcal{F}$. Let U be an identity open neighborhood in $G_{\mathfrak{R}}$. Then there exist elements $a_1, a_2, ... a_n \in G_{\mathfrak{R}}$ such that $A \subseteq \bigcup_{i=1}^n a_i U$.

Since $A \in \mathcal{F}$ and \mathcal{F} is a rough ultrafilter on $G_{\mathfrak{R}}$, $a_iU \in \mathcal{F}$, for some $i \leq n$. Therefore, by the definition of rough cauchy filter, \mathcal{F} is a rough cauchy filter on $G_{\mathfrak{R}}$. Since $G_{\mathfrak{R}}$ is a rough complete topological simple rough group, \mathcal{F} converges to some element x in $G_{\mathfrak{R}}$. Since $A \in \mathcal{F}' \subseteq \mathcal{F}$, every set in \mathcal{F} intersects A. Therefore, $x \in cl(A)$, cl(A) means closure of A. Since A is closed, $x \in A$. Hence \mathcal{F}' converges to x in A which implies A is compact.

Theorem 3.7. Let $G_{\mathfrak{R}}$ be a topological simple rough group such that $G_{\mathfrak{R}}$ is open in $\overline{G_{\mathfrak{R}}}$. A subset S of a topological group $\overline{G_{\mathfrak{R}}}$ is rough precompact in $G_{\mathfrak{R}}$ if and only if the closure of S in the rough complete group $\widehat{G_{\mathfrak{R}}}$ of $G_{\mathfrak{R}}$ is compact.

Proof: Suppose the closure of S, cl(S) is compact in $\widehat{G_{\mathfrak{R}}}$ of $G_{\mathfrak{R}}$. Let U be an identity open neighbourhood in $\overline{G_{\mathfrak{R}}}$ and also let V be an identity open neighbourhood in $\overline{G_{\mathfrak{R}}}$ such that

 $V \cap G_{\mathfrak{R}} \subseteq U \cap G_{\mathfrak{R}}$.

Since cl(S) is compact and S is dense in cl(S), there exists a finite subset F of S such that $cl(S) \subseteq FV \cap VF$.

Let $x \in S \subseteq cl(S)$. Then x = fv, for some $f \in F$ and $v \in V$. Therefore,

 $v = f^{-1}x \in F^{-1}S \subseteq S^{-1}S \subseteq G_{\Re}.$

Since $v \in V$,

 $v\in G_{\Re}\cap V\subseteq U\cap G_{\Re}\subseteq U.$

Therefore, $x = fv \in FU$ which implies $S \subseteq FU$, similarly $S \subseteq UF$. Hence S is rough precompact. Conversely, suppose S is rough precompact in G_{\Re} . By proposition 3.4 and S is dense in cl(S), cl(S) is rough precompact. From proposition 3.6, cl(S) is compact.

Corollary 3.8. Let P and Q be rough precompact subset of a topological simple rough group G_{\Re} . Then the sets P^{-1} , Q^{-1} and PQ are rough precompact in G_{\Re} .

Proof: Let \widehat{G}_{\Re} be a rough complete of G_{\Re} . Then cl(P) and cl(Q) are compact by Proposition 3.7. Therefore, $\{cl(P)\}^{-1}, \{cl(Q)\}^{-1}$ and cl(P)cl(Q) are compact. Since the sets P^{-1}, Q^{-1} and PQ are dense in $\{cl(P)\}^{-1}, \{cl(Q)\}^{-1}$ and cl(P)cl(Q), by theorem 3.7, P^{-1}, Q^{-1} and PQ are rough precompact.

Proposition 3.9. Let P_i be a rough precompact subset of a topological simple rough group $G_{\mathfrak{R}}^{(i)}$, for each $i \in I$. Then the set $P = \prod_{i \in I} P_i$ is a rough precompact in the topological product $\prod_{i \in I} G_{\Re}^{(i)}$.

Proof: Let $\widehat{G}_{\mathfrak{R}}$ be a rough complete of $G_{\mathfrak{R}}$. By theorem 2.14, $\prod_{i \in I} \widehat{G}_{\mathfrak{R}}^{(i)}$ is rough precompact, then the closure of P is in $\widehat{G_{\mathfrak{R}}}$, $cl(P) = \prod_{i \in I} cl(P_i)$, where $cl(P_i)$ refers closure with respect to $\widehat{G_{\mathfrak{R}}^{(l)}}$, for each $i \in I$. Since P_i is rough precompact and by theorem 3.7, $cl(P_i)$ are compact. Therefore, cl(P) is compact. Since P is dense in cl(P), P is rough precompact.

References

- Arhangel Skii AV, Tkachenko M, Topological Groups And Related Structures, Atlantis Press And World Sci, Paris (2008).
- Biswas, R, Nanda, S, Rough Groups And Rough Subgroups, Bull. Pol. AC. Math., 42(1994) 251-254.
- [2] [3] Duoqian Miao, Suqing Han, Daoguo Li, And Lijun Sun, Rough Groups, Rough Subgroup And Their Properties, Rough Sets, Fuzzy
- Sets, Data Mining, And Granular Computing. 2005, Pp. 104-113.

 Dror Bar Natan, "Ultrafilters, Compactness And The Stone-Cach Compactification", Date: March 7, 1993.
- Engelking. R, General Topology (Revised And Completed), Heldermann Verlag, Berlin, 1989.
- Fucai Lin, Qianqian Sun, Yujin Lin, Jinjin Li, Some Topological Properties Of Topological Rough Groups, Soft Computing (2021) 25: 3441 - 3453.
- [7] Nof Alharbi, Alaa Altassan, Hassen Aydi, Cenap ÖZel, On Topological Rough Groups, J. Computational Analysis And Applications 29. No. 1 (2021), 117-122,
- Nurettin Bagirmaz, Ilhan Icen And Abdullah F. Ozcan, Topological Rough Groups, Topol. Algebra Appl. 2016; 4: 31-38.
- [9] Pawlak. Z, Rough Sets, International Journal Of Computer And Information Sciences, Vol. 11, No. 5, 1982, 341-356.
- [10] Tamilarasi, P., Selvi, R., Topological Simple Rough Groups, Journal Of The Of Indian Acad. Math. Vol. 47, No. 1 (2025) Pp. 1-16.
- Tamilarasi. P, Selvi. R, Separation Axioms On Topological Simple Rough Groups, Proceeding Of The International Conference On Recent Trends In Applied Mathematics And Computer Science, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous), Virudhunagar, March 6, 2025, P.No: 82-89.
- [12] Tamilarasi. P, Selvi. R, Rough Filter On Topological Simple Rough Groups, Seminar Proceedings On Graph Theory And It's Applications (GRAPHS'25), Department Of Mathematics And Research Centre, Sarah Tucker College (Autonomous), Tirunelveli -7, Tamilnadu, India, September 11, 2025, P.No: 7 – 15.