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l. Introduction.

The notion of a gamma ring was first introduced by N. Nobusawa [6] as a generalization of the concept
of a classical ring. Barnes [1] generalized the concept of the Nobusawa’s gamma ring which is known as a
gamma ring and Nobusawa’s gamma ring is known as I'y-ring (i.e. gamma ring in the sense of Nobusawa) L.
Luh [5] worked on simple gamma rings and obtained some important properties. I. N. Herstein [3, 4] obtained
various characterizations of simple rings with involution and also developed some structural results of Lie and
Jordan rings. Paul and Sabur Uddin [7, 8] worked on Lie and Jordan structure in simple gamma rings and
obtained some remarkable results.

In this paper, we introduce the concept of an involution of a I'-ring. An example of the involution for a
I'-ring is given here. Some characterizations of simple I'-rings are obtained by means of the involution. Also, we
develop some properties of Lie and Jordan ideals with involutions.

1. Preliminaries.
2.1. Definitions.
Gamma Ring. [1] Let M and I" be two additive abelian groups. Suppose that there is a mapping from M x I' x
M — M (sending (X, a, y) into xay) such that
i)  (X+Yy)az=xaz+yaz
X (o + B)z = Xaz + Xpz
Xay + z) = Xay + Xoz
i) (xay)Bz = xa(yB2),
where x,y, zeM and a, BeI". Then M is called a I"-ring.

Ideal of I"-rings. A subset A of the I'-ring M is a left (right) ideal of M if A is an additive subgroup of M and
MTA = {caa | ceM, ael’, acA}HAI'M) is contained in A. If A is both a left and a right ideal of M, then we say
that A is an ideal or two sided ideal of M.

If A and B are both left (respectively right or two sided) ideals of M, then A+ B={a+ b |acA, beB}
is clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite sum of
left (respectively right or two sided) ideal of a I'-ring is also a left (respectively right or two sided) ideal.

Nilpotent element. Let M be a T"-ring. An element x of M is called nilpotent if for some yeT, there exists a
positive integer n = n(y) such that (xy)"x = (Xyxy...yxy)x = 0.

Nilpotent ideal. An ideal A of a I'-ring M is called nilpotent if (AI')"A = (ATAT...I’AI)A = 0, where n is the
least positive integer.

Simple T-ring. AT-ring M is called a simple T-ring if MM = 0 and its ideals are {0} and M.

Centre of aT'-ring. Let M be T"-ring. The centre of M, written as Z is the set of those elements in M that
commute with every element in M, thatis, Z={meM | myx = xym for all xeM and yeI'}.

Jordan Structure. Let M be al'-ring. The Jordan structure is defined by- (x, y), = Xay + yox for x, yeM and
all ael’. We say that a subset A of M is a Jordan sub-T"-ring of M if A is an additive subgroup such that for a,
beA and a.eT’, aob + baa must also be in A.
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Jordan Ideal. Let A be a Jordan sub-TI"-ring of M. The additive subgroup UcA is to said to be a Jordan ideal of
A if whenever ueU, a€A, and a<T then (u, a), = uca + aou is in U.

Lie Structure. Let M be al'-ring. The Lie structure is defined by- [X, Y], = Xay - yox for X, yeM and for all
oacl’. We say that a subset A of M is a Lie sub-T"-ring of M if A is an additive subgroup such that for a, beA
and a.el’, aob - baa must also be in A.

Lie Ideal. Let A be a Lie sub-I"-ring of M. The additive subgroup UcA is said to be a Lie ideal of A if
whenever ueU, acA, aecrl, then [u, a], = uaa - aau is in U. If A, B are subsets of M, then [A, B]r is the
additive subgroup of M generated by all aab - baa with acA, beB and ael". If M is non-commutative simple
I'-ring of characteristic # 2, then the sub-I'-ring generated by [M, M]r in M. If U is a Lie ideal of M, let
T(U)={xeM | [x, M] cU}.

We need the following theorems for obtaining our results which are appeared in [7, 8].

2.2 Theorem. Let M be a simple I -ring of characteristic # 2. Then any Lie ideal of M which is also a sub-T" -
ring of M must either be M itself or contained in the centre of M.

2.3 Theorem. Let M be a I -ring and Z is a centre of M. If M is quadratic over Z, then M is at most 4-
dimensional over Z.

2.4 Theorem. If M is a simple I'-ring and if U is a Lie ideal of [M.M]. then either U = Z or
U S[M.M], exceptif M is of characteristic 2 and is 4-dimensional over Z.
2.5 Theorem. If M is a simple non-commutative I" -ring then the sub-I" -ring generated by [M,M],. is M.

2.6 Theorem. Let M be a simple I -ring of characteristic # 2 and let U be a Lie ideal of M. Then either
UcZ o U>o[MM]..

2.7 Theorem. If M is a non-commutative simple I" -ring of characteristic # 2, then the

sub- I -ring generated by [M, M].. is M.

2.8 Theorem. Let M be a I'-ring and O#N a right ideal of M. Suppose that, given
aeN and y eI, (ay)"a=0 for afixed integer n; then M has a non-nilpotent ideal.

2.9 Theorem. Let M be a I" -ring having no-non-zero nilpotent ideals in which 2X =0 implies that X =0. If
a M commutes with all aaX—Xaa, X e M, a € M, then a is in the centre of M.

1. Simple Gamma Rings with Involutions.
3.1 InvolutionI -ring. Let M be a I" -ring. A mapping I: M—> M is called an involution if

(i) I(a+b) =1I(a)+1(b)
(ii) I(aab) =1(b)d(a)
(iii) I’(a) =a

forall a,beM,axeT.

If I(a) = a, then ais called a symmetric element of M and if I(a) =—a, then a called a skew symmetric
element of M.

3.2 Example. Let R be an associative ring with 1 having an involution *. Let

M = Mlg(R) and T'= {(

I ((a, b)) =(a", b"). Then it is clear that | is an involution on M.

n.1
j: n,n, e Z}. Then Mis a I"-ring. Define | : M — M by

n,.1

3.3 Theorem. Let M be a simple I -ring with an involution | on M. Define S, the set of all symmetric elements
of MbyS= {X € M|I(X) = X} and K, the set of all skew symmetric elements of M by

K= {X € M|I(X) = —X} . Then S and K are respectively Jordan sub-I" -ring and Lie sub-I" -ring of M and M
=S®K.
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Proof . We have | (0)=0then 0 S. Let a,be S, then I(a-b) = I (a)-I(b) =a-b. Soa—b € S . Hence S in an
additive subgroup of M. Let o T, then I(aah + baa) =1(aab) + I(baa) =1(b)al(a) +1(a)ad(b) =
baa+aab =aab+baa. Thus acb+baa €S . Hence S is a Jordan sub-T" -ring of M. We have 1 (0) =
0=-0,s0 0eK.
Let a,b e K, then I(a-b) = I (a)-I(b) = - a + b = -(a-b). Hence a—b € K . So K is an additive subgroup of M.
Let @ €I, then
I(aab —baa) =1(aab) - I(baa)
=1(b)al(a) —1(a)d(b)

=(-b)a(-a)—(-a)a(-b)

=baa—aab

=—(aab—baa). Thusaab —baa € K.
Hence K is a Lie sub-I" -ring of M. Since 2M is an ideal of M and M is simple, 2M=M. So for every
X+I(x) x—1I(x)

+ >

NOWI(XJFTI(X)j :%I(x+1(x)): %(I(x)ﬂz(x)) = %(I(x)+ X) :%(xﬂ(x)) =

X+1(X) c

XxeM, % makes sense and so we can write X =

X+1(X)

Hence S.

(x-1 1 1 ) 1 1 1
AgalnI(XT(x)jzal(x—I(x)) =§(1(x)—1 (x)):E(I(x)—x):—E(X—I(x)) __ X210

2
Hence X_TI(X) e K.

X+1(x) N X —=1(x)
2
Let Xxe S(K, then x € S and K. So I(X) = X and I(X) =—X. Therefore X =—X. This implies that

2Xx=0.S0x =0.Thus SﬂK:{O}.HenceM =S®PK.

Now we shall determine the nature of S as a Jordan I -ring and that of K as a Lie I" -ring.
Also, if s€S and ke K then sak—kaseS. In studying I'-rings with involution | two cases
immediately present themselves; these depend on the nature of the involution on a certain prescribed subset. The
definition we are about to give should be made using the centroid rather than the centre, however in the material
at hand it is the centre, even if it is 0, that plays the crucial role.

Notation. If A is a subset of M then A will denote the sub-1" -ring of M generated by A.

There fore X = e S+ K. HenceM=S+K.

3.4 Theorem. Let M be a simple I -ring with involution | of characteristic not 2 and let S
= {X € M|I(X) = X} . Then § the sub-I" -ring of M generated by S is M unless M is of dimension 4 or less
(thus 4 or 1) over its centre.

Proof. We claim that § is a Lie ideal of M. To see this note first that trivially [§ SJF C § If k e Kand

5 IS § we want to show that [g k] IS § o €I'; todo so, since 5 is a sum of monomials from S, we need
o

merely do it for monomials S =s,as,a.......as,, S; €S. But then

n?

[sas,a.....as, k] =[s.k] as,a.. as, +....+8a....as_a[s, K] as,a..as +..

n
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+8,a8,......aS, e[ s, K] which certainly in S . Thus
[gM] :[g,S + K} =[§ S] +[§ K] —S andso S isa Lie ideal of M. By definition it is a sub-
r r r r

I" -ring of M. There fore by Theorem 2.2 we conclude that either S=M orScZ.

We consider the second possibility, namely ScZ. But then ScZ. Given
aeM,a=s+k,seScZ, keKhence a—s=Kk. Then (a—s)y(a—s)=kyk,y I This implies
that aya—ays—sya+sys=kyk. So aya—sya—sya+Sys = kyK.Consequently
aya—2sya+Ssys—kyk =0, which is to say, M is quadratic over Z. By theorem 2.3, we get that M is at

most 4-dimensional over Z.

Related to this theorem is the following remark which holds for simple I"-rings of any characteristic which
have involutions.

3.5 Theorem. Let M be a simple I' -ring with involution | whose centre Z=0 or for which

dim M/Z > 4 . Then the only element commuting with S = {X € M|I(X) = X} liein Z.

Proof. Let a € M commute with all S&S. If the characteristic of M is not 2, by theorem 3.4,
§ =M hence a € Z follows. Thus we may suppose that M is of characteristic 2.

Let T= {m € M| mas=sam,seS,a € F}. T is clearly a sub-I'-ring of M. Given
xeM, aeTthen aa(x+I(x)) =(X+I(X)a. This implies that aarX +aal(X) = xaa+1(X)xa. So
that aaX+ 2xaa +aal(X) = xaa + | (X)aa+ 2aal(X). Hence aax+ Xaa = aad(X) +I(X)aa.

We want to show that T is a Lie ideal of M. Given aeT,yeM,seS then
(aay + yad)as =aayas+ yaaas
=aayas+ yasaa
=aayas+2aasal(y)+ yasaa since 2aasal(y)=0
=aayas+aasal(y)+aasal(y) + yasaa
=aa(yas+sal(y)) +saaal(y) + yasaa
=(yas+sal(y))aa+saaal(y)+ yasaa
= yasaa+sal(y)aa+saaal(y)+ yasaa
=2yasaa+sal(y)aa+ saaal(y)
=sal(y)aa+saad(y)[. 2yasaa=0]
=sa(I(y)aa+aal(y))

=sa(yaa+aay)
as we have just shown. In other words, T is both a Lie ideal and sub-1I" -ring of M. By our assumption on dim

M/Z we get from Theorems 2.4and 25that T —Z or T =M. If T=M then S < Z which we have seen
forces dim % <4 .Thus T < Z, which is the assertion of the theorem.

We have already seen in Theorem 3.4 that § =M for most simple I"-rings. We now wish to establish its

companion theorem namely, that K =M in general. To do so we first show another construction, in most I" -
ring with involution 1 of a Lie ideal of the I" -ring.

3.6 Definition. KI" K is the additive group generated by all kiak, with k;,k, e K, o eT".
3.7 Lemma. Let M be any I -ring with involution | such that M = S+K. Then KI" K is a Lie ideal of M.
Proof. Let k., k, eK and k e K. Then

(kak,)ak —ka(kak,) = (kak —kak,)ak, +ka(k,ak —kak,)
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e KT'K, so [KTK, K]r c KTK. On the other hand, if seS then
(k,ak,)as —sa(k,ak,) =ka(k,as+sak,) —(k,as+sak,)ak, € KI'K.

Thus[KT'K, S]. < KTK.Now[KI'K, M]. =[KIK, K+S] =[KI'K,K]+ [KTK,S] < KIK. Hence
KI' K is a Lie ideal of M.

3.8 Theorem. If M isa simple I" -ring with involution I of characteristic not 2, then K=M provided dim

M/Z >4,

Proof. Then conditions of Lemma 3.7 hold in M hence KI'K, as a Lie ideal of M. By theorem 2.6 must
either KTK o [M .M ]r or KTK cZ. Now if KTK o [M .M ]r then

K S KIK o [M M ]r = M by the theorem 2.7. Suppose then that KI'K < Z.

If ae K is not invertible then since al' K — Z and all the non-zero elements of Z are invertible we must
have al'K=0. In particular, aca=0,ael’. If aeS then aaS+SaacK. Hence

0=aa(aas+saa) = acaas +aasaa = aasaa. There fore al'ST"a = 0. Hence
alMl'a=al'(S+K)['a =al'STTa+al'lKI'a=0+0I'a=0. Consequently MT"a is a nilpotent left
ideal and so a = 0. Thus a0 in K forces a to be invertible. If be K and aabeZ, then we get
bezZla*=ZTa(since aca=neZ). Thus KcZTa.

If s€S commutes with a then sacaecK cZI'a forcing Se€Z. Now if S&S then
saa+aas=taa,teZ, in fact teZ(1S. Thus (Sas-—tas)aa=aw(sas—tas). But since

Sas—tasS €S and commutes with a, so SaS—tasS e Z.Given xe M, x=s+ paa,seS,peZ. Hence
XaXx = (s+ paa)a(s+ paa)
=sas+Sa paa+ paaas+ (paa)a(paa)

=sasS+ pasaa+ paaas+ pa(aap)aa

=SaS+ pasaa+ paaas+ papaaca

=sas+ pa(saa+aas)+(pap)a(aca)

=SaS+ pataa+ papan.
Now XaX—taX=sSsas+ pataa+ papan—tax

=saS+ pataa+ papan—ta(s+ paa)

=SasS+ pataa+ papan—tas—tapaa

=SasS+ pataa+ papan—tas— pataa

=SaS—tas+ papan.
Since as we have seen SaS—taS € Z, we must have XaX—taX e Z. In thisway M has been shown to be
quadratic over Z. By theorem 2.3, M must be at most 4-dimenional over Z. This proves the theorem.

We now prepare to study the Jordan structure of S. We begin with
3.9 Theorem. If U # 0 is a Jordan ideal of Sthen for ueU,m,se M,

ma(ue)®uas +1(s)a(ua)’uad(m) eU.

Proof. Then proof will consist of breaking m and s into their symmetric and skew symmetric parts and
verifying that in these special instances the theorem holds. We do this in the sequence of three lemmas.
3.10Lemma. If X,y €S and ueU then XaUay+ YyauaxeU,a eT.

Proof. 2xauax = { xa(Xau +uax) + (Xau +uax)ax} —{Xxaxau +uaxax} . Since
XaX € S, Xaxau+Uuaxax eU. Again since XaU+Uax €U,
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S0 is{Xa(xau +Uuax) + (xau +uax)ax} eU. Thus 2xauax eU. But we have 2S = S, so we get

Xauax eU. Now Linearizing on x we get XaUayeU. Similarly we get YauUaxeU.Thus
Xauay + yoauax eU.

3.11 Lemma. If S€ S,k e K and X eU then sauauak —kauauas eU,a T .

Proof. Since Uak —kau isin S, Uauak —kauau =ua(uak —kau) + (Uak —kau)au isin U. Being
a Jordan ideal of S, Sa(Uauak —kauau) + (Uauak —kauau)as eU. Thatis,

1)

sa(uauak —kauau) + (Uauak —kauau)as = sauauak —kauauas — sakauau + uauakas
isin U.

Consider

)

ka(uauas — sauau) + (Uauas — Sauau)ak = kauauas —sauauak —kasauau +uauasak.

Adding (1) and (2) the right sides add up to Uaua(kas+sak)—(kas+sak)auau which, since

kas+sak € K, we have seen must be in U. Therefore the sum of the left sides must be in U; since the left
side of (1) is already in U we get that of (2) must also be in U. Now subtract (1) from (2); doing so we stay in U.
The result on the right is 2(Sauauak —kauauas)eU . Since 2S = S this gives

sauauak —kauauas eU forall seS, ke K,ueU,a T, which is the desired result.

3.12 Lemma. If a,beK and ucU then aa(ua)’uab+ba(ua)’ucacU, a <T.
Proof. Since b e K, so bauau —uauab eU. Thus 2(bauau —uauab) eU.

Since 2K =K (and so 4K =K) this gives us (bauau —uauab)a(bauau —uauab) eU.
But expanding we have
(bauau —uauab)a(bauau —uauab) = (bauau)a(bauau) — (bauau)a(uauab)

—(uauab)a(bauau) + (Uauab)a(uauab)

= bauauabauau —ba(ua)*uab —uauababauau

+Uauabauauab
= (bauauab)a(uau) + (Uau)a(baucuab)

— (uau)a(bab)a(uau) —bea(ua)®uab.
Now {(baucuab)a(uau)+ (Uau)a(bauauab)}is in U, since bauauab e S and 2uau €U . By
Lemma 3.10 since 2uaU €U, duauababauau €U, so (Uuau) a(bab)a(uau) eU. The upshot of
all this is that ba(ua)’uabeU. Linearizing on b we get aa(ua)’uabeU. Similarly we get
ba(ua)’uaa eU. Thus aa(ua)*uab +ba(ua)’uaa eU.
Proof of theorem 3.9. Given ueU,m,seM then m=m,+m, S=S,+S with

my,S,,€S,m,, s, € K. Thus
ma(ua)*uas +1(s)a(ua)’uad(m)
= (m, + m)a(ua)’ua(s, +s,) +1(s, + s, )a(ua)’ual(m, + m)
= (I, + M) a(UeYUer(s, +5,) +(1(5,) + (s ))er(ua) uar(1(my) +1(m,))
= (M, + m)a(ua)’ua(s, +s,) + (s, —s)a(ua)’ua(m, —m,)
=mya(ua)’uas, + s,a(ua)’uam, + (ma(ua)’uas, —sa(ua)’uam,)
+(m, (Ua)’uas, —s,a(ma)’uam) + (m, (Ua)’uas, +s,a(Ua)’uam,).

Since 4(u(x)3u €U and since we have seen the factor 4 can be eliminated we obtain the desired theorem as a
combination of the three Lammas 3.10, 3.11 and 3.12.
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We are in a position to prove the basic
3.13 Theorem. The only Jordan ideals of S are 0 and S thatis, S isasimple Jordan I" -ring.
Proof. Let U #0 be a Jordan ideal of S. If ueU then we have seen that

ma(ua)’uat +1(t)a(ua)’uad(m) eU for all m, te M. If (Ua)’u=0 then MT" (Ua)*ul'M =M
and so, given XM then X= Zmia(ua)Suati. But then I(X)= Zl(ti)a(ua)3ual(mi) . Hence
X+1(x) = Z:(mi(z(ua)uacti +1(t)a(ua) uad(m,)) isin U. Since X+I(X) covers Sas X runs over M
we get that U = S. Thus if U#S we must assume that (Uar)’u=0 for all ueU. Given
ueU, m=my+m,m,eS,m €K we have
2{uauam+I(m)auau} = 2 {uauc(m, +m)+I(m, +m)auau}

= 2uquam, + 2uauam, +2(I(m,) + I(m,))auau

= 2uaquam, + 2uauam, +2(m, —m,)auau

= 2Uuauam, + 2uquam, +2m,auau —2mauau

= 2(uauam, + myauau) + 2(Uuacuam, —meauau) isin U,
Since (Ue)’u =0, 4{(uauam +I(m)auau)a}3 (uauam+I(m)auau)=0. We get

{(uozuozm)oz}4 (uauam) =0 for all ueU and me M. By theorem 2.8 we conclude that uau =0
for all u eU. Linearizing we get that uav+Vau =0 forall u,velU. Given s€S,v=uas+sau cU.
Hence 0=uaVv+Vvau =ua(uas+sau) + (Uas + Sau)au = Uauas + UasSau
+UaSau + Sauau = 2uasau +Uauas + Sauau = 2uasau, since Uau =0. Thus UaSau =0 for
al ueU and seS. Given keK then Kauak e€S. Hence uakauakau=0. For any
meM,m=m,+m, with my €S, m €K, then
uamauamau = ua(m, +m)aua(m, +m)au

= (uam,au +uamau)a(m, + m)au

= (Uuam,au +uamau)a(myoeu +mau)

= Uam,auamyau + Uamauam,au + Uamauamyau + Uam,auamau

=0.
There fore uemauamauam = 0am . Thus uegmauamauam = 0. Hence {(Uam)a}2 (uam) =0.

By Theorem 2.8, we conclude that u =0. We have prove that U=0or U =S. Hence the theorem is proved.
Having determined the Jordan structure of S we now want to determine the Lie structure of K. We begin with
the very easy

3.14 Lemma. If Uisa Lieideal of Kandif ueU, seS then (Uau)as—sa(uau) eU, a eT.

Proof. To see the result merely note that Uas+sau e K and
(uau)as —sa(uau) = ua(uas +sau) — (Uas + Sau)au €U.

3.15 Definition. If U is a Lie ideal of K then T(U) ={Xe K|[X,K]r CU}.

Clearly T (U) isa Lie ideal of K and contains U. We want a closer tie-in between U and T(U).
3.16 Lemma. If U is a Lie ideal of K then u,v,welU implies uavauecT(U) and

uavaw+wavau € TU),a €T
Proof. Consider [uaVau, K ]r : forkeK
uavauak —kauavau = ua(Vauak + kauav) — (Vauak + kauav)au +vauakau —uakauav
= Ua {vauak —I(vauak)} —{(vauak —I(vauak))au}
+ {Va(uakau) — (chkau)av} :
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Since  Vauak —I(vauak) is in K, so its commutator with u is in U. Since
uakau € K, {va(uakau) - (uakau)av} €U. In all we have shown that [uavau, K] U and so

uavau € T(U). Linearizing on U we obtain Uavaw+wavau € T(U).

We proceed to prove
3.17 Theorem. If U is a Lie ideal of K then for all

u,veU, (uauav—vauocu)am—-I(m)a(uauav —vauau) €T (U) forall me M,a €T
Proof. We write m=s+k with se S, k e K. Then

1. (Uauav —vauau) as —sa (uauav —vauau ) = {(UaUas —Ssauau)av —va(uauas — SaUau)}

+{uaua (vas—sav)—(vas—sav)auqu}. By Lemma 314, UaUas—sauoueU, so

{(uauas —Sauau)aV—Va(uauas —Sauau)} isin U. Also, since VaS—SaV € S, by Lemma 3.14

again {uaua(Vas—Sav)—(VaS—SaV)auau} isin U. Being in U these are certainly in T(U). Hence

(Uauav —vauau)as —sa(Uauav —vauau) is in T(U).

2. (Uauav —vauau) ok +ka (uauav —vauau)

=Uaua(vok +kav)—(vak + kav) cuau}+va(kauau —uauok) + (keuau —uauok)av

=vVa(kauau —uauak) +(kauou —ucuak) av (modU ) (by Lemma3.14,since vak + kav € S)

=Va((kau—uaok) au +ua (ke —uok))+ (ke —uaok)au + ua(kau — uok))ev(modU )

= Va{(kau —uak)au —ua(kou — uak)} —{(kau —uak)au —ua(kau —uak)} oV +
2(vaua(kau —uak )+ (kau —uak)auav) (modU )

= 2(vaua(kau —uak) + (kau —uak)auav) (modU ).

But by Lemma 3.14, since kau —uak eU, vaua(uak —kau) + (uak —kau)auav is in T(U). Then

upshot of all this is that (uauaV—Vauau)ak + ka(uauaV—Vauau) IS T(U )

Hence (Uauav —Vvauau)am—I(m)a(uauav —Vauou)

= (uauav—vauau)a(s+k) —1(s + k)a(uauav —vauau)

= (uauav—vauau)a(s+k) — (s —k)a(uauav —vauau)

={(uauav —vauau)as —sa (uauav —vauau }+{(uauav —vauau ) ak +ka (uauav —vauau }

isin TU).

3.18 Theorem. If M is simple and dim M/Z >4 and if U s a Lie ideal of K then either

U o[K,K]. or uauav =vauau forall u,veU.

Proof. Let a=UaUaV—Vauau, where U,V €U . By theorem 3.17,aam—I(m)aa € T(U) for
almeM, ael . If k eK then b=(aam-I(m)aa)ak, —ka(aam—-I(m)aa) eU < TU).
Since b=aa(mak,)—I(mak,)aa—I(m)aack, —k.caam, so I(m)aack, +kaacmeTU) for
all me M, k; € K. We continue in this vein, let k, € K. Then
(I(m)aack, +k,cacm)ak, —k,a(I(m)aack, +k.aaam) e T < T(U)

Hence I(m)aaak,ak, —1(I(m)aack,ak,) +kaaa(mak,) +1(mak,)aack, € TU).

Since k,caa(mak,)+1(mak,)caak, e TU), we obtain
I(m)aaak ak, —1(I(m)aaakak,) e T(U). Continuing we get by induction that for all keK,
I(m)aaaR—I(I(m)aaaR) € T(U). Since dim M/Z >4, by theorem 3.8, K=M. Then
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maaat —I(maaat) e TU) for all mteM. Now MI'al'M is an ideal of M, if a=0, then
MI'al'M=MButforany XeM, X=)» meaaat;, so1(x)=1_ meaat) =D I(mcact;)

=Y 1(t)ad(a)ad(m) = > I(t,)eacd(m;),since I(a) = a.

Hence Xx—I(X) = Z:miocaati —Zl(miaaati)z Z(mia’aati —I(mcaat;)) e TU).

Since X —1I(X) sweeps out K and we have that if a # 0 then T(U) o K. From the definition of T(U) this
says that U :)[K, K]F.

3.19 Theorem. If M is simple, dim M/Z >4 and if U is a Lie ideal of K such that [K,K]. U then given

ueU, uaueZ, acl.

Proof. Since UaUaV =Vauau by theorem 3.18, UaU is in the centre of L_J,
the sub-I"-ring generated by U. However UaUaS—SauauelU for sSeS  and
uauak —kauau =ua(uak —kau) + (uak —kau)au €U for k € S, thus uau commutes with all

uaua(s+Kk)—(s+k)auau, s €S, k e K, that is with all ueuam—meauau, for all me M . Since
the characteristic is not 2, by theorem 2.9 that this forces UaU to be in Z.

3.20 Corollary. If [K,K]. U , then uav+vau eZ forall u,velU and ¢ €T .

3.21 Theorem. If M is simple, dim M/Z >4 and U is a Lie ideal of K such that uau €U, «a €I implies

Uau =0, thenU=0.

Proof. On linearizing Uau =0 we get uav+vau=0 for all u,veU. Thus UaVv=-Vau. So
UauaVv = —Vauau =0. Given ueU, kekK then
2uakau = uakau —kauau —uauak +uakau = (Uak —kau)au —ua(uak —kau) (since uau = 0).
Hence uakau eU. But then Vauakauav =0. Since Uav =—Vau, we arrive at UaVI' KI'uav =0.
Now I(uav)=I(v)ad(u) =vau =—-uav, that is, uaveK, thus for s€ S, sauavaseK and so
uavasocuavasauoV e UevI'Kl'uav =0. Given meS, m=s+k,seS,keK, whence
uavamauavamauaV = 0.The right ideal UavI'M is such that every element in it has cube 0. By
theorem 2.8 this forces uav =0 for all u,v eU.But then for k € K, ua(uak —kau) =0, leaving us with

ul'KI'u = 0. As above we then get UaSauasau =0 for S€ S and so UI'M is a nil right ideal, where
every element has cube 0. The outcome of this is that u=0 thatis, U=0.
Combining theorems 3.19 and 3.21 we have

3.22 Theorem. If M is simple and Z = 0 then any non-zero Lie ideal U of K must contain[K, K],
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