On Bitopological \Box **-open sets**

¹Baby Bhattacharya, ²Arnab Paul

Department of Mathematics, NIT Agartala, Jirania-799055Tripura (W), INDIA.

Abstract: The purpose of this paper is to introduce and study the properties of (1,2) γ - open set in bitopological space. In this paper we also study (1, 2) γ -locally closed set, (1,2) γ -t-set, (1,2) γ -B-set and relationship between (1,2) b-open set and (1,2) γ -open set. **Keywords-** (1, 2) b-open set , (1,2) B-set, (1,2) t-set (1,2) locally closed , (1,2) γ - open set.

I. Introduction

D. Andrijevic and M. Ganster [3] introduced a class of generalised open sets in a topological spaces, the so called γ -open set .The class of γ -open sets contains all semi-open sets, pre-open sets, and b-open sets. Further Tong [4] introduced the concept of t-set and B-set in topological spaces. In 1963 J.C Kelly [5] introduced the concept of bitopological spaces .The purpose of this paper is to introduce the γ -open set in bitopological space, study the properties of this set and investigate the relationship between (1,2) γ -open set, (1,2) locally -closed set , (1,2) γ -locally closed set and (1, 2) b-open set . In this paper lastly we study comparison of (1, 2) γ -open set with (1,2)^{*} - γ -open set .

II. Preliminaries

Throughout this paper by X we mean bitopological space (X, τ_1, τ_2)

Definition 2.1 A subset A of X is $\tau_1 \tau_2$ -open ([6]) if $A \in \tau_1 \cup \tau_2$ and $\tau_1 \tau_2$ -closed if its complement is $\tau_1 \tau_2$ -open in X. The $\tau_1 \tau_2$ -closure of A is denoted by $\tau_1 \tau_2$ -cl (A) and $\tau_1 \tau_2$ -cl(A) = $\bigcap \{ F: A \subset F \text{ and } F^C \text{ is a } \tau_1 \tau_2 \text{ -open} \}$

Remark 2.2 [2] Notice that $\tau_1 \tau_2$ -open subsets of X need not necessarily form a topology.

Now, we recall some definitions and results which are used in this paper.

Definition 2.3 [7] A subset A of a bitopological space X is

(i) (1,2) semi-open set if $A \subseteq \tau_2 \operatorname{-cl}(\tau_1 \operatorname{-int}(A))$

(ii) (1,2) pre - open set if $A \subseteq \tau_1$ -int(τ_2 -cl(A))

(iii) (1,2) α - open set if $A \subseteq \tau_1$ -int(τ_2 -cl(τ_1 -int(A)))

(iv) (1,2) b-open set if $A \subseteq \tau_1$ -int $(\tau_2 - \operatorname{cl}(A)) \bigcup \tau_2 - \operatorname{cl}(\tau_1 - \operatorname{int}(A))$.

(v) (1, 2) regular open set if $A = \tau_1$ -int (τ_2 -cl(A)).

The complements of all the above mentioned open sets are called their respective closed sets. The family of all (1,2) open sets [(1,2) semi open, (1,2) regular open, (1,2) α -open, (1,2) b-open]of X will be denoted by (1,2) O(X)(resp. (1,2) SO(X), (1,2) RO(X), (1,2) α O(X), (1,2) b O(X)].

Proposition 2.4[7] In a bitopological space (X, τ_1, τ_2) , any open set in (X, τ_1) is (1,2) b-open set and any open set in (X, τ_2) is (2,1) b-open set.

Remark 2.5[7] In a bitopological space (1, 2) b-open set and (1, 2) locally closed are independent.

Proposition 2.6 [7]

(i) The union of any family of (1, 2) b-open sets is (1, 2) b-open.

(ii) The intersection of an τ_1 open set and a (1, 2) b-open set is a (1, 2) b-open set.

III. $(1, 2) \square$ - open set

Definition 3.1 A subset A of (X, τ_1, τ_2) is said to be (1, 2) γ - open set if for any non empty (1, 2) pre-open set B in X such that $A \cap B \subseteq \tau_1$ -int $(\tau_2$ -cl $(A \cap B))$.

Example 3.2 Let X={a, b, c}, $\tau_1 = \{\{a\}, \{b\}, \{a,b\}, \varphi, X\}, \tau_2 = \{\{b\}, \varphi, X\}$

 $(1, 2) \gamma$ - O(X) = {{a}, {b}, {a, b}, {b,c}, φ , X}.

Remark 3.3 In a bitopological space (X, τ_1, τ_2) a τ_1 open set and a $(1, 2)\gamma$ -open set are independent as seen in the following examples.

Example 3.4 Let $X = \{a, b, c\}$ $\tau_1 = \{\{a, c\}, \phi, X\}$ $\tau_2 = \{\{b\}, \{a, b\}, \phi, X\}$

 $(1, 2)PO(X) = \{\{a, c\}, \{b, c\}, \{a, b\}, \{b\}, \varphi, X\}$ $(1, 2) \gamma - O(X) = \{\{a, b\}, \{b\}, \varphi, X\}$

Here, $\{a, c\}$ is τ_1 open set but not a (1, 2) γ -open set .

Example 3.5 Let $X = \{a, b, c\}$ $\tau_1 = \{\{a\}, \{b\}, \{a, b\} \phi, X\}$ $\tau_2 = \{\{b\}, \{c\}, \{b, c\}, \phi, X\}$

 $(1, 2)PO(X) = \{\{a \}, \{b\}, \{a, b\}, \{b, c\}, \phi, X\}$

(1, 2) γ -O(X) = { { a }, { b }, { a, b }, { b, c }, \phi , X }

Here {b,c} is a (1, 2) γ -open set but not a τ_1 -open set.

Definition 3.6 A subset A of (X, τ_1, τ_2) is called

(i) (1,2) locally closed if $A = U \bigcap V$, where $U \in \tau_1$ and V is a τ_2 - closed set.

(ii) (1,2) locally γ -closed if $A = U \cap V$, where $U \in \tau_1$ and V is a $\tau_2 - \gamma$ closed set.

Remark 3.7 (1, 2) γ - open set and (1, 2) locally closed are independent as seen from the following example.

Example 3.8 Let $X = \{a, b, c, d\}, \tau_1 = \{\{a\}, \{a, b\}, \{a, c, d\}, \varphi, X\}, \tau_2 = \{\{a\}, \{d\}, \{a, d\}, \varphi, X\}$

(1, 2) γ -O(X) = {{a}, {a,b}, {a, d}, {a, b, d}, {a, c, d}, \varphi, X}.

 $(1,2) LC(X) = \{\{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \varphi, X\}.$

Here {a, b, d} is (1,2) γ -open set but not (1,2) locally closed and {a, b,c} is (1,2) locally closed but not (1,2) γ -open set.

Definition 3.9 A space is called (1, 2) extremally γ -disconnected space if $\tau_2 - \gamma$ closure of each $\tau_1 - \gamma$ open set is $\tau_1 - \gamma$ open similarly $\tau_1 - \gamma$ closure of each $\tau_2 - \gamma$ open set is $\tau_2 - \gamma$ open.

Example 3.10 Let $X = \{a, b, c\}, \tau_1 = \{\{a\}, \{b\}, \{a, b\}, \varphi, X\}, \tau_2 = \{\{a\}, \{c\}, \{a, c\}, \varphi, X\}$

 $\tau_1 - \gamma O(X) = \{\{a\}, \{b\}, \{a, b\}, \varphi, X\}.$

 $\tau_2 - \gamma O(X) = \{\{a\}, \{c\}, \{a, c\}, \varphi, X\}.$

Hence every $\tau_2 - \gamma$ closure of each $\tau_1 - \gamma$ open set is $\tau_1 - \gamma$ open set and also every $\tau_1 - \gamma$ closure of each $\tau_2 - \gamma$ open set is $\tau_2 - \gamma$ open set.

Theorem 3.11 For a subset A of an (1, 2) extremely γ -disconnected space X, if A is (1, 2) γ -open set and (1, 2) locally closed set, then A is τ_1 -open.

Proof Let A be $(1, 2) \gamma$ -open set and (1, 2) locally closed set. So

 $(A \cap B) \subseteq \tau_1 \operatorname{int}(\tau_2 Cl(A \cap B))$ and $A = U \cap \tau_2 Cl(A)$. Then

 $(A \cap B) \subseteq \tau_1 \operatorname{int}(\tau_2 Cl(A) \cap \tau_2 Cl(B))$

 $\subseteq \tau_1 \operatorname{int}(\tau_2 Cl(U \cap \tau_2 Cl(A)) \cap \tau_2 Cl(B))$ $\subseteq \tau_1 \operatorname{int}(U \cap \tau_2 Cl(A) \cap \tau_2 Cl(B)) \quad \text{(Since X is (1, 2) extremely γ-disconnected)}$ $\subseteq \tau_1 \operatorname{int}(A \cap \tau_2 Cl(B))$ $\subseteq \tau_2 Cl(\tau_1 \operatorname{int}(A \cap B))$ $= \tau_1 \operatorname{int}(A \cap B)$

Hence $(A \cap B) \subseteq \tau_1$ int $(A \cap B)$

Therefore A is τ_1 -open.

Proposition 3.12 Let H be a subset of X, H is (1,2) locally γ - closed set iff there exist an τ_1 open set U \subseteq X such that H=U \cap (1,2) γ cl-(H).

Proof: Since H is (1,2) locally γ -closed \Rightarrow H=U \cap F, where U is τ_1 open and F is (1,2) γ -closed. So H \subseteq U, H \subseteq F

 $H \subseteq (1, 2) \gamma$ -cl (H) $\subseteq (1, 2) \gamma$ -cl(F)=F

Hence $H \subseteq U \bigcap (1,2) \gamma$ -cl(H) $\subseteq U \bigcap (1,2) \gamma$ - cl(F) $\subseteq U \bigcap F=H$

Hence $H = U \bigcap (1,2) \gamma - cl(H)$.

Conversely since $(1,2) \gamma$ -cl(H) is $(1,2) \gamma$ - closed and H=U $\bigcap (1,2) \gamma$ -cl(H) then H is (1,2) locally γ - closed. **Proposition 3.13** The union of any family of $(1, 2) \gamma$ -open set is a $(1,2) \gamma$ -open set.

Proof: Let *A* and *B* be any two (1,2) γ - open set .So there exist two non empty pre-open set C and D, we have $(A \cap C) \subseteq \tau_1 \operatorname{int}(\tau_2 cl(A \cap C))$.

Now,

 $(A \cup B) \cap (C \cup D)$ = $(A \cap C) \cup (B \cap D)$ $\subseteq \tau_1 \operatorname{int}(\tau_2 cl(A \cap C)) \cup \tau_1 \operatorname{int}(\tau_2 cl(B \cap D))$ $\subseteq \tau_1 \operatorname{int}(\tau_2 cl(A \cup B)) \cap \tau_1 \operatorname{int}(\tau_2 cl(B \cup D))$ $\subseteq \tau_1 \operatorname{int}(\tau_2 cl((A \cup B)) \cap (C \cup D))).$

 $(B \cap D) \subseteq \tau_1 \operatorname{int}(\tau_2 cl(B \cap D)).$

Hence the union of any family of $(1,2) \gamma$ -open set is a $(1,2) \gamma$ -open set.

Proposition 3.14 The intersection of any two $(1, 2) \gamma$ -open set is a $(1, 2) \gamma$ -open set .

Proof Let A and B be any two $(1,2)\gamma$ - open set.

So, for any (1, 2) pre open set C

Now

$$(A \cap C) \subseteq \tau_1 \operatorname{int}(\tau_2 cl(A \cap B)) \text{ and}$$
$$(B \cap C) \subseteq \tau_1 \operatorname{int}(\tau_2 cl(B \cap C))$$
$$(A \cap B) = A \cap (B \cap C)$$

By the definition of (1, 2) γ - open set $(A \cap (B \cap C))$ is a (1, 2) pre open set. Hence $A \cap B$ is a (1,2) γ - open set.

Proposition 3.15 Let A be a subset of (X, τ_1, τ_2) and if A is (1,2) locally γ -closed then (i) (1,2) γ cl(A)-A is (1,2) γ -closed.

(ii) $[A \bigcup (X - \gamma cl(A)] \text{ is } (1,2) \gamma \text{ -open set.}$

(iii) $A \subseteq \gamma \operatorname{int}(A \bigcup (X - \gamma cl(A)))$

Proof (i) If A is an (1,2) locally γ -closed, then there exist an τ_1 open set U such that

 $A = U \cap (1,2) \gamma cl(A)$

Now, $(1,2)\gamma cl(A) - A$

= (1, 2) $\gamma c l(A) - [U \cap (1,2)\gamma c l(A)]$

= (1, 2) γ cl (*A*) \bigcap [(X-U) \bigcup (X-(1,2) cl(*A*))].

= (1, 2) γ cl (A) \bigcap (X-U) ,which is (1,2) γ -closed.(by proposition 3.8)

(ii)Since (1,2) cl(A)-A is (1,2) γ - closed, then $[X-((1,2)\gamma cl(A)-A]$ is (1,2) γ -open.

And

 $\{[X-((1, 2)cl(A)-A)]$

 $= (X-(1, 2) \operatorname{cl}(A)) \bigcup (X \bigcap A)$

 $= A \bigcup [X-(1, 2)cl(A)] \}.$

Hence $[A \bigcup (X - cl (A))]$ is $(1, 2) \gamma$ -open.

 $A \subseteq [A \bigcup (X - (1,2))cl(A)]$

= (1, 2) γ int [(A \bigcup (X- γ cl (A))].Hence the proof.

Remark 3.16 (1, 2) α -open set and (1, 2) locally γ -closed are independent as seen from the following example.

Example 3.17 Let X={a,b, c, d}, τ_1 ={{a}, {a,b}, {a, c, d}, ϕ ,X}, τ_2 ={{a}, {a, d}, ϕ ,X}.

(1,2) α O(X)={{a},{a,b},{a, c},{a, d},{a, b,c},{a, b, d},{a, c, d}, \varphi X}

Locally (1,2) γ C(X) = {{a},{b},{c},{d},{a,b},{b,c},{b,d},{c,d},{b, c, d},{a, c, d}, \varphi, X}

It is obvious that {a, b, c} is a (1, 2) α -open set but not (1,2) locally γ -closed. Also {b, c, d} is (1,2) locally γ -closed but not (1,2) α -open set.

Proposition 3.18 A subset A of (X, τ_1, τ_2) is τ_1 -open iff it is (1, 2) pre-open and (1,2) B-set. **Proof** If A is τ_1 open then A is (1,2) pre-open. And $A \subseteq \tau_1 \operatorname{int}(\tau_2 \operatorname{cl}(A))$ So $A = U \cap V$, where $U \in \tau_1$ and V is a (1,2) t-set. Hence A is a (1, 2) pre-open and (1, 2) B-set. Conversely A is a (1, 2) pre-open and (1, 2) B-set. $\Rightarrow A \subseteq \tau_1 \operatorname{int}(\tau_2 cl(A))$ and $A = U \cap V$, where $U \in \tau_1$ and V is a (1,2) t-set. Therefore τ_1 int $A = \tau_1$ int $(\tau_2 cl(A))$ Hence τ_1 int $A \subseteq A$ Also τ_1 int $A \subseteq A$ Hence A is τ_1 open. **Definition 3.19** A subset A of a space (X, τ_1, τ_2) is said to be (i) (1, 2) γ - semi open if $A \subseteq \tau_2 cl(\tau_1 \gamma \text{ int } (A))$ (ii) (1, 2) γ -pre open if $A \subseteq \tau_1 \operatorname{int}(\tau_2 \gamma cl(A))$ **Proposition 3.20** For subsets A and B of a space (X, τ_1, τ_2) the following properties are hold. (i) A is $(1, 2) \gamma$ -t set iff it is $(1, 2) \gamma$ -semi closed. (ii) If A and B are $(1, 2) \gamma$ -t sets then $(A \cap B)$ is a $(1, 2) \gamma$ -t set. (iii) If A is $\tau_2 - \gamma$ closed then it is a (1,2) γ -t set. **Proof** (i) Let A be (1, 2) γ -t set. So τ_1 int $A = \tau_1$ int $(\tau_2 \gamma - cl(A))$ Therefore, τ_1 int $(\tau_2(\gamma-cl(A)) \subseteq \tau_1$ int $A \subseteq A$ and A is (1,2) γ - semi closed. Conversely, If A is $(1, 2) \gamma$ -semi closed then $\tau_1 \operatorname{int}(\tau_2 \gamma \operatorname{-cl}(A)) \subseteq A$ Thus $\tau_1 \operatorname{int}(\tau_2 \gamma \operatorname{-cl}(A)) \subseteq \tau_1 \operatorname{int} A$ Also $A \subseteq \tau_2 \gamma$ -cl(A) $\Rightarrow \tau_1 \operatorname{int} A \subseteq \tau_1 \operatorname{int} (\tau_2 \gamma \operatorname{-cl}(A))$ Hence τ_1 int $A = \tau_1$ int $(\tau_2 \gamma - cl(A))$. (ii) Let A and B be $(1, 2) \gamma$ -t-sets. Then we have $\tau_1 \operatorname{int}(A \cap B) \subseteq \tau_1 \operatorname{int}(\tau_2 cl(A \cap B))$ $\subseteq \tau_1 \operatorname{int}(\tau_2 cl(A)) \cap \tau_1 \operatorname{int} \tau_2 cl(B))$ $= \tau_1 \text{ int } A \cap \tau_1 \text{ int } B$ Then $\tau_1 \operatorname{int}(A \cap B) = \tau_1 \operatorname{int}(\tau_2 cl(A \cap B))$ Hence $A \bigcap B$ is $(1, 2) \gamma$ -t-set. (iii) Let A be a $\tau_2 - \gamma$ closed. $A = \tau_2 - \gamma clA$ $\Rightarrow \tau_1 \text{ int } A = \tau_1 \text{ int}(\tau_2 \gamma - \text{cl}(A))$ Hence A is a $(1,2) \gamma$ -t set. **Remark 3.21** In a bitopological space, if A is a $(1, 2) \gamma$ -t set then it is may not be $(1, 2) \gamma$ -closed as seen in the following example. **Example 3.22** Let $X = \{a, b, c\}$, $\tau_1 = \{\{a\}, \{b\}, \{a, b\} \ \varphi, X\}$, $\tau_2 = \{\{b\}, \varphi, X\}$ $(1, 2) PO(X) = \{\{a\}, \{b\}, \{a,b\}, \{b,c\}, \varphi, X\}.$ $(1, 2) \gamma O(X) = \{\{a\}, \{b\}, \{a,b\}, \{b,c\}, \varphi, X\}$ (1, 2) γ -cl(X) = {{b, c}, {a, c}, {c}, {a}, φ , X}.

Here {b} is (1, 2) γ -t set but it is not (1, 2) γ -closed.

Remark 3.23 In bitopological space every $(1, 2) \gamma$ -open set is (1, 2) b-open set but converse is not true as seen in the following example.

Example 3.24 Let $X = \{a, b, c, d\}$, $\tau_1 = \{\{a\}, \{a, c, d\}, \{a, b\}, \phi, X\}$, $\tau_2 = \{\{a\}, \{d\}, \{a, d\}, \phi, X\}$ $(1, 2) \ \gamma \ \mathrm{O}(\mathrm{X}) = \{\{\mathrm{a}\}, \, \{\mathrm{a}, \mathrm{b}\}, \, \{\mathrm{a}, \mathrm{d}\}, \, \{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \, \{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \, \varphi \ , \, \mathrm{X}\}$

(1,2) b O(X) = { {a}, {a,b}, {a, d}, {a,b,d}, {a, c, d}, {a, c}, {a,b, c}, φ, X }

It is obvious that $\{a, c\}$ is (1, 2) b- open set but not (1, 2) γ - open set.

IV . $(1, 2)^* - \gamma$ - Open Set

Now we define $(1, 2)^* \gamma$ -open set using the $\tau_{1,2}$ open set [8] and $\tau_{1,2}$ preopen set [8].

Definition 4.1 Let A be a subset of X. Then A is called $\tau_{1,2}$ - open [8] if $A = A_i \bigcup B_i$

Where $A_i \in \tau_1$, $B_i \in \tau_2$.

The complement of $\tau_{1,2}$ -open set [8] is $\tau_{1,2}$ -closed set. The family of all $\tau_{1,2}$ -open set and $\tau_{1,2}$ -closed set is denoted by $(1, 2)^*$ -O(X), $(1, 2)^*$ -C (X).

Definition 4.2 Let A be a subset of a bitopological space X. Then

1) $\tau_{1,2}$ -closure of A [8] denoted by $\tau_{1,2}$ -cl(A) is defined as the intersection of all $\tau_{1,2}$ - closed sets containing A.

2) $\tau_{1,2}$ -interior of A [8] denoted by $\tau_{1,2}$ -int (A) is defined as the union of all $\tau_{1,2}$ - open sets contained in A.

Definition 4.3 A subset A of a space (X, τ_1, τ_2) is called (1,2)*- γ - open set if there exist a non empty $(1,2)^*$ - pre open set *B* such that

 $(A \cap B) \subseteq \tau_{1,2} - \operatorname{int}(\tau_{1,2} - cl(A \cap B)).$

Example 4.4 Let $X = \{a, b, c\}$ $\tau_1 = \{\{a\}, \{a, b\}, \phi, X\}$ $\tau_2 = \{\{c\}, \phi, X\}$

 $\tau_{1,2}$ -open = {{a}, {a, b}, {c}, {a, c}, φ , X}.(1, 2)* -pre -open set = {{a}, {a, b}, {c}, {a, c}, φ , X}

 $(1, 2)^* - \gamma$ -open set = {{a}, {a, b}, {c}, {a, c}, \varphi, X}

Remark 4.5 Every (1, 2) γ open set is a (1, 2)^{*}- γ -open set but converse may not be true as seen in the following example.

Example 4.6 Let $X = \{a, b, c\}$ $\tau_1 = \{\{a\}, \{a, b\}, \{b\}, \varphi, X\}$ $\tau_2 = \{\{c\}, \{a, b\}, \varphi, X\}$

(1, 2) pre -open = {{a}, {a, b}, {b}, {b}, {b, c}, {a, c}, φ , X}

 $(1, 2) \gamma$ -open set = {{a}, {a, b}, {b}, φ , X}

 $(1,2)^*$ -O(X) = { {a}, {a, b}, {b, {c}, {b,c}, {a,c}, φ , X }

 $(1,2)^*$ - PO(X) = {{a}, {a, b}, {b}, {c}, {b,c}, {a,c}, \varphi, X}

 $(1, 2)^* - \gamma - O(X) = \{\{a\}, \{a, b\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \varphi, X\}$

V. Conclusion

We know that in bitopological space collection of open set need not necessarily form a topology [2] and violate the topological properties. But from the present study we conclude that collection of γ -open set form a topology in bitopological space . Also in this paper we have proved $(1,2) \gamma - O(X) \subseteq (1,2)^* - \gamma - O(X)$ and we will use the collection $(1,2)^*$ - γ -open set for more results.

References

- Ahmad Al-Omari and Mohd. Salmi Md., Noorani., "Decomposition of continuity via b-open set.", Bol. Soc. Paran Mat., (3s.) [1] v. 26, 1-2 (2008):53-64.
- C. Janaki, Renu Thomas, ON (1,2)* -R*-CLOSED SETS, Asian Journal of Current Engineering and Maths 1:6 Nov-Dec [2] (2012) 371-377.

- J. Tong, On Decomposition of continuity in topological spaces" Acta Math. Hungar 54(1-2) (1989), 51-55. Kelly, J.C., "Bitopological Spaces", *Proc. London Math. Soc. 13 (1963) No 3, 71-89.* [41
- [5]
- [6] Lellis Thivagar, M., "Generalization of pairwise α -continuous Functions", Pure and Appl. Mathematika Sci. 28 (1991), 55-63.
- M. Lellis Thivagar and B. Meera Devi, "Bitopological B-open Sets", International Journal of Algorithms, Computing and [7] Mathematics, Volume 3, Number 3, August 2010.
- M. Lellis Thivagar, O. Ravi, On strong forms of $(1,2)^*$ -quotient mapping s in Bitopological Spaces, International .J. Math. [8] Game Theory and Algebra 14(6)2004, 481-492.
- R. Engelking , General topology vol 6 of sigma series in pure mathematics 1989. [9]
- Yiezi Kadham Mahdi Semi-open and Semi-closed in Bitopological Spaces, 2007 19-18. [10]

^[3] D. Andrijevic and M. Ganster, on PO-equivalent topologies, IV International Meeting on Topology in Italy (Sorrento, 1988), Rend. Circ. Mat. Palermo (2) Suppl., 24(1990), 251-256.