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 Abstract: In this paper, we study a vaccination model for tuberculosis (TB) dynamics at the population level.  We  

prove that the solution to the model is positive and bounded.  The basic reproduction number  is determined. We 

show that the disease-free equilibrium (DFE) is globally asymptotically stable if  and the existence of at 

least one endemic equilibrium of the model.  Numerical simulations of the model is also carried out to show the 

efficacy of the vaccine.  Numerical experiments suggest that a strategy of continuous vaccination would result in a 

more stable DFE for disease elimination. 
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I.    Introduction 
 Tuberculosis (TB) epidemics have had a large impact on the human population [6, 7, 19, 25].  Despite 

many decades of study, the widespread availability of a vaccine and a highly visible WHO effort to promote unified 

global TB control strategy, tuberculosis remains a leading cause of death by infectious disease depending on the 

source [6, 24].  It is responsible for approximately 2 million deaths each year [6, 24].  One third of the world’s 

population is estimated to be infected with TB and new infections occur at a rate of about one per second [6, 25].  In 

2003, Africa alone had 8.8million new infections which results in 1.7 million deaths [24].  In 2007, there were an 

estimated 13.7 million chronic active TB cases, 9.3 million new cases and 1.8 million deaths mostly in developing 

countries [24, 25]. 

 Although TB is currently well controlled in most countries, numerous studies indicate that the overall 

global incidence of TB is rising as a result of resurgence of the disease in Africa and parts of Eastern Europe and 

Asia [9, 12, 25].  In these regions, the emergence of drug-resistance TB strains and the convergence of HIV and TB 

epidemics have made TB control an herculean task [6].  In more than half of all HIV-related deaths in most 

developing countries, TB is the ‘opportunistic infection’ which takes advantage of an immune system already 

compromised by HIV [6]. 

 The distribution of TB is not uniform across the globe; about 80% of the population in many Asian and 

African countries test positive in TB test while only 5-10% of the US population test positive [5].  Of all African 

countries, Nigeria has the highest TB burden and is ranked 4
th

 among the 22 high burden countries in the world [24].  

According to WHO reports, it has 311 TB cases for every 100,000 population [34].  Nigeria’s level of new TB cases 

rose from 15% in 2002 to 26.7% in 2004 [24]. 

 In this paper, we study a vaccination model for the transmission of tuberculosis disease.  We focus on 

vaccination of expectant mothers in a country at the brink of eradicating TB infection.  The work is based on 

numerous TB transmission models which have been formulated by previous researchers.  Consequently, the result of 

this paper is related to and complements those of Blower et al. [1, 2], Dye et al. [8], Porco et al. [13], Salpeter and 

Salpeter [14], Vynncky and Fine [20, 21], Waaler [21, 22], Ziv et al. [28] and the others cited in the references 

which deal with TB dynamics. 

 

II.     Mathematical Formulation 
2.1 The Model 

 Let S, V, E, I denote, respectively, the classes of susceptible, vaccinated, latently infected and actively 

infected.  We describe the transmission dynamics of tuberculosis by the following system of ordinary differential 

equations 
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where  is the total size of the population.  See Table 1 for detailed descriptions of the model 

parameters and reference [28] for further description of the model formulation 

 

Table 1: Description of Parameters for the Model 

Parameter Description 

 
Recruitment rate into the population 

 
Proportion of immigrants that are vaccinated 

 
Rate of slow progression 

 
Rate of fast progression 

 
Natural death rate 

 
Mortality rate due to TB infection 

 
Transmission rate of active TB 

 
Treatment rate of active TB 

 
Detection rate of active TB 

 
Rate at which the vaccine wanes 

 
Rate at which susceptible individuals recover 

 
Efficacy of vaccine in preventing initial infection 

 
Efficacy of vaccine in preventing fast progression 

 
Proportion of recruitment due to immigration 

 

     2.2   Basic Properties of Solutions 

 In this section, we study some results of the solutions of the system (2.1) – (2.4) which will be very useful 

in the section which follow. 

 Let denote the set of positive vectors  with  for 

.  We will use the following results in  Thieme [18]. 

Lemma 2.1:   Let   such that 

 

be continuous and have partial derivatives  which exist and are continuous in  for all   

Then  is locally Lipschitz continuous in . 

Theorem 2.1:   Let  be locally Lipschitz continuous and for each  satisfying 
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Then for every , there exists a unique solution of  with values in  which is 

defined in some interval  with  then 

 
 

III.    Methodology 
 3.1   Existence, Uniqueness and Positivity 

Lemma 3.1:   Let  be continuous differentiable function of   respectively. 

Theorem 3.1:   Assume Lemma 3.1 holds.  For all  there exists 

 which solve (2.1) – (2.4) with initial conditions 

 

 

Proof:  We will apply Theorem 2.1, let 

 

 
where    By Lemma 3.1 and the properties of continuity over operations, we have the continuity 

of  for all     Further the partial derivatives 

 
These partial derivatives exist and are continuous.  In the same way, the other partial derivatives exist and 

are continuous.  In consequence, by Lemma 2.1,  is locally Lipschitz continuous.   Let  and 

 then    

 

Now let,  

 and  then    Further, let 

  and  then  

Finally, let  

By Theorem 2.1, for every , there exists a unique solution of 

 with values in  which is defined in some interval  with .  If , 

then   

Suppose that  and set  then 

 
such  that 

 
In consequence 
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Integrating the above inequality, we obtain 

 
which implies that 

 
so,  is bounded, a contradiction with Theorem 3.1.  In consequence, .  Then 

the solutions of the system are positive and defined on . 

 

3.2   Boundedness of Solutions 
Theorem 3.2:  All the solutions of the system (2.1) – (2.4) are bounded. 

Using the equation (3.2), we have 

 

 

 
Proposition 3.1:   for all  where 

 
Next, the proof is divided into two cases. 

Case 1:   If  

Assume that the proposition is not true, there exists a  such that 

 

 

 

 
then  which is a contradiction.  In consequence, the proposition is true. 

Case 2:   If   

Suppose the proposition is not true; there exists a   such that 

 

 

 

 

as   then  and  < 0,  a contradiction.  In consequence, the proposition is true.  

It means that  for all ,  then we have proved the theorem. 

 

IV.   Global Stability of the DFE 
Let the right hand side of (2.1) – (2.4) be zero, then it can be seen that the system has a disease-free 

equilibrium   given by 
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Proposition 4.1:   The basic reproduction number for model system (2.1) – (2.4) is 

                

 
Theorem 4.1:    The DFE of system (2.1) – (2.4) is globally asymptotically stable (GAS) if   and unstable if 

 

Proof:   We follow the approach in Sharomi et al. [15].  We first show that the sets 

 
and 

 
are positively invariant and attracting, and we then find a Lyapunov function for the model on .  Summing the 

equations in the model gives 

 

Since the right hand side of (4.5) is bounded above by ,  it follows then that 

,  if .   More specifically by a standard comparison theorem [10 11, 15, 16], we can show 

that .   In particular,   if .    Thus    is 

positively-invariant.  If ,  then either the solution enters  in infinite time or  approaches  

asymptotically and the infected variables  and  approach zero.   Hence,   is attracting and the proof is complete. 

 Now, using the Lyapunov function 

 
we have that   if  and  if and only if .  Then, it follows from the Lasalle 

Invariant Principle [10], that  and  as .  That is, the disease dies out.  Since, the disease-free 

equilibrium  is GAS for the reduced system with ,  it follows that the DFE is GAS on .  Since  is 

attracting as well as positively invariant, then the DFE is GAS if  . 

 

V.    Existence and Stability of Endemic Equilibrium 
Using the techniques of persistence theory [3, 10, 17, 26], we can show the uniform persistence of TB 

disease and the existence of at least one endemic equilibrium.  Then we have the following theorem. 

Theorem 5.1 [10].  For model (2.1) – (2.4), if ,  then the disease is uniformly persistent i.e. there exists a 

constant  such that every       solution 

 of system (2.1) – (2.4) with 

 satisfies 

 
and (2.1) – (2.4) admit at least one endemic equilibrium. 

Proof.    Let 
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It suffices to prove that  repels uniformly the solutions of system (2.1) – (2.4) in .  Since  is relatively 

closed in , then it implies that  and  are positively invariant. 

Now, assume that 

 

 
Clearly,  and  for any .  Since,  is globally stable in , we have that  

is an isolated invariant set and acyclic.  By Theorem 4.6 in Thieme [24], the model system (2.1) – (2.4) is uniformly 

persistent with respect to .   Furthermore, by  

Theorem 2.4 in Zhao [27], system (2.1) – (2.4) has an equilibrium .   This means that  is an endemic 

equilibrium of the model (2.1) – (2.4). 

 

VI.   Numerical Approach 

Consider  in equation (4.2) and noting biological considerations, let  

.  For these parameter 

values, the basic reproduction number for the disease-free equilibrium is . 

Remark 6.1:  The susceptible subpopulation win the competition with the infected pregnant women introduced into 

the total population and the disease eventually dies out.  In consequence, a large proportion of newborn babies are 

able to escape TB infections since . 

If we fix  and let  then the disease 

becomes endemic and the basic reproduction number is  

Remark 6.2:  In a disease without recovery with any initial population size, if the basic reproductive number is 

greater than one, an average infectious pregnant woman is able to replace itself and the number of infected rises and 

an epidemic result.  This is a bad situation that could lead to 100% of newborns from infected mothers being 

infected.   

 

VII.    Discussion and Conclusion 

We have studied a vaccination model of TB epidemics.  We have shown that the DFE is GAS if  

and that there exist at least one unique positive endemic equilibrium    The DFE is the most desirable result for 

countries with high TB burden such as Ghana, Nigeria and India .  In such countries, vaccination of expectant 

mothers and treatment pregnant women is the best strategy and must be kept high in order to lower .   In the case 

where   the spread of the disease may be caused by certain factors such as age at vaccination, drug-resistant 

TB strains and effect of HIV on tuberculosis [13]. Furthermore, based on our mathematical analysis, we are able to 

conclude that BCG vaccination of infected pregnant women could result in increased TB incidence for any country, 

including those with low burden like United Kingdom, USA and Germany.  This may arise if there are no strict 

checks for those immigrating to ensure that they are either vaccinated or have other immunity against TB disease.  

In conclusion, we recommend strict border checks and vaccinations of infected mothers and measures such as good 

health care system for expectant mothers to ensure there is no transmission of infection from mother to child in order 

to produce a DFE necessary for eradication of infection. 
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