Generalised Statistical Convergence For Double Sequences

A. M. Brono, Z. U. Siddiqui

Department of Mathematics and Statistics, University of Maiduguri, Nigeria

Abstract: Recently, the concept of β -statistical Convergence was introduced considering a sequence of infinite matrices $\beta = (b_{nk}(i))$. Later, it was used to define and study β -statistical limit point, β -statistical cluster point, st_{β} – limit inferior and st_{β} – limit superior. In this paper we analogously define and study 2β -statistical limit, 2β -statistical cluster point, $st_{2\beta}$ – limit inferior and $st_{2\beta}$ – limit superior for double sequences. **Keywords:** Double sequences, Statistical convergence, β -statistical Convergence Regular matrices, RH-regular matrices.

I. Introduction

A double sequence $x = [x_{jk}]_{j,k=0}^{\infty}$ is said to be convergent in the pringsheim sense or p-convergent if for every $\varepsilon > 0$ there exist $N \in \mathbb{N}$ such that $|x_{jk} - L| < \varepsilon$ whenever j, k > N and L is called the Pringsheim limit [1], denoted *P-limx* = L.

A double sequence x is bounded if there exist a positive number M such that $|x_{jk}| < M$ for all j, k i.e if $||x|| = sup_{jk} |x_{jk}| < \infty$. Note that in contrast to the case for single sequences, a convergent double sequence need not be bounded.

Let $A = (a_{nk})_{n,k=1}^{\infty}$ be a non-negative regular matrix. Then A-density of a set $K \subseteq \mathbb{N}$ is defined if $\delta_A(K) = \lim_n \sum_{k \in K} a_{nk}$ exists [2].

A sequence $x = (x_k)$ is said to be A-statistically convergent to L if for every $\varepsilon > 0$ the set $K(\varepsilon) = \{k \in K : |x_k - L| \ge \varepsilon\}$ has A-density zero [3], (see also [4] and [5]).

Recently, Kolk [6] generalized the idea of A-statistical convergent to β -statistical Convergence by using the idea of β -summability or F_{β} -convergence due to Stieglitz [7].

Let $A = [a_{jk}^{mn}]_{j,k=0}^{\infty}$ be a regular doubly infinite matrix of real numbers for all m, n = 0, 1, In the similar manner as in [2], we define 2A-density of the set $K = \{(j, k) \in \mathbb{N} \times \mathbb{N}\}$ if for m, n = 0, 1, 2, ...

$$\delta_{2A}(K) = \lim_{pq \to \infty} \sum_{i=0}^{p} \sum_{k=0}^{q} a_{ik}^{mn}$$

$$\tag{1.1}$$

exists and a double sequence $x = (x_{jk})$ is said to be 2A-statistically convergent to L if for every $\varepsilon > 0$ the set $K(\varepsilon)$ has 2A-density zero.

Let $\beta = (\beta_i)$ be a sequence of infinite matrices with $\beta_i = (b_{jk}(i))$. Then $x = (x_{jk}) \in \ell_{\infty}^2$, the space of bounded double sequences, is said to be F-convergent (2 β -summable) to the value 2 β – *limx* (denotes the generalized limit) if

$$\lim_{n} (\beta_{i} x)_{n} = \lim_{p,q \to \infty} \sum_{i=0}^{p} \sum_{k=0}^{q} b_{jk}^{mn}(i) = 2\beta - \lim x$$
(1.2)

uniformly for i > 0, m, n = 0, 1, The method 2β is regular if $\beta = [b_{jk}^{mn}]_{j,k=0}^{\infty}$ is RH-Regular. (see [8]). Kolk [6] introduced the following:

An index set K is said to have β -density $\delta_{\beta}(K)$ equal to d, if the characteristic sequence of K is β -summable to d, i.e.

$$\lim_{n} \sum_{k \in K} b_{nk}(i) = d, \tag{1.3}$$

uniformly in *i*, where by index set we mean a set $K = \{k_i\} \subset \mathbb{N}$, $k_i < k_{1+i}$ for all i. Now we extend this definition as follows:

An indexed set $K = \{(j,k)\} \subseteq \mathbb{N} \times \mathbb{N}$, $j_i < j_{i+1}$, $k_i < k_{1+i}$ for all *i*, is said to have 2β density $\delta_{2\beta}(K) = d$, if the characteristic sequence of K is 2β -summable to d, i. e., if

$$\lim_{nm} \sum_{j \in K} \sum_{k \in K} b_{jk}^{mn}(i) = d$$

$$(1.4)$$

uniformly in *i*.

Let \mathcal{R}^* denote the set of all RH-regular methods 2β with $b_{jk}^{mn}(i) \ge 0$ for all *j*, *k* and *i*. let $\beta \in \mathcal{R}^*$, A double sequence $x = (x_{jk})$ is called 2β -statistically convergent to the number L if for every $\varepsilon > 0$ there exist a subset K= {(j, k)} $\subseteq \mathbb{N} \times \mathbb{N}$ *j*, *k* = 1, 2, ... such that

$$\delta_{2\beta}\{(j,k), j \le n, k \le m : |x_{jk} - L| \ge \varepsilon\} = 0$$
(1.5)

and we write $st_{2\beta}$ -lim x = L.

We denote by $st(2\beta)$, the space of all 2β -statistically convergent sequences.

In particular, if $\beta = (C_1)$, the Cesaro matrix, the β -statistical convergence is reduced to C_{11} -statistical convergence.

II. 2β -Statistical Cluster And Limit Points

We use the following examples to show that neither of the two methods, statistical convergence and 2β -statistical convergence, implies the other.

the sequence of infinite matrices
$$\beta = (\beta_i)$$
 with

$$b_{jk}^{mn}(i) = \begin{cases} \frac{1}{i} + \frac{1}{ij}, & \text{if } k = j^2 \,\forall m, n \\ 1 - \frac{j}{i(j+1)}, & \text{if } k = j^2 + 1 \,\forall m, n \\ 0, & \text{otherwise} \end{cases}$$

It is clear that $\beta \in \mathcal{R}^*$,

Example 2.1: Consider

Now let the sequence $x = (x_{ik})$ and $y = (y_{ik})$ be defined by

$$x_{jk} = \begin{cases} 0, & \text{if } k = n^2, \text{for all } j \text{ and some } n \in \mathbb{N} \\ \frac{1}{k}, \text{if } k = n^2 + 1, \text{for all } j \text{ and some } n \in \mathbb{N} \\ k, & \text{otherwise} \end{cases}$$

and

$$y_{jk} = \begin{cases} k, & \text{if } k = n^2, \text{for all } j \text{ and some } n \in \mathbb{N} \\ 0, \text{if } k = n^2 + 1, \text{for all } j \text{ and some } n \in \mathbb{N} \\ 1, & \text{otherwise} \end{cases}$$

Then x is not statistically convergent to zero as $\delta\{(i, j): |x_{ij}| \ge \varepsilon\} \ne 0$ but it is 2β -statistically convergent to zero; and on the other hand y is statistically convergent but not 2β -statistically convergent.

We now give some definitions for the method 2β .

Definition 2.2: Let $\beta \in \mathbb{R}^*$. Then number γ is said to be 2β –statistical cluster point of a sequence x_{jk} if for given $\varepsilon > 0$, the set $\{(j,k); |x_{jk} - j| < \varepsilon\}$ does not have 2β – density zero.

Definition2.3: Let $\beta \in \mathbb{R}^*$. The number λ is said to be 2β –statistical limit point of a sequence x_{jk} if there is a subsequence of x_{jk} which convergence to λ such that whose indices do not have 2β – *density zero*.

Denote by $\Gamma_x(2\beta)$, the set of 2β –statistical cluster points and by $\Lambda_x(2\beta)$ the set of 2β –statistical limit points of $x = (x_{jk})$ it is clear from the above examples, that $\Gamma_x(2\beta) = \{0\}$ and $\Lambda_x(2\beta) = \{0\}$, $\Gamma_y(2\beta) = \{0\}$ and $\Lambda_y(2\beta) = \{0\}$. Throughout this paper we will consider $\beta \in \mathcal{R}^*$.

Definition 2.4: Let us write $G_x = \{g \in \mathcal{R}: \delta_{2\beta}(\{(j,k): x_{jk} > g\}) \neq 0\}$ and $F_x = \{f \in \mathcal{R}: \delta_{2\beta}(\{(j,k): x_{jk} < f\}) \neq 0$ for a double sequence x = xjk. Then we define 2β -statistical limit superior and 2β -statistical limit inferior of $x = (x_{jk})$ as follows:

$$st_{2\beta} - \lim Supx = \begin{cases} SupG_x, & \text{if } G_x \neq \emptyset \\ -\infty, & \text{if } G_x = \emptyset \end{cases}$$

$$st_{2\beta} - lim Inf x = \begin{cases} Inf F_x, & lf F_x \neq \emptyset \\ +\infty, & if F_x = \emptyset. \end{cases}$$

Definition 2.5: The double sequence $x = (x_{jk})$ is said to be 2β –statistically bounded if there is a number d such that $\delta_{2\beta}\{(j,k): |x_{jk}| > d\} = 0$.

Definition 2.6: Consider the same β as defined in example 2.1, define the sequence $z = (z_{jk})$ by

$$z_{jk} = \begin{cases} 0, & \text{if } k = n^2, \text{for all } k \text{ and some } n \in \mathbb{N} \\ 1, \text{if } k = n^2 + 1, \text{for all } k \text{ and some } n \in \mathbb{N} \\ k, & \text{otherwise.} \end{cases}$$

Here we see that z is not bounded above but it is 2β -statistically bounded for $\delta_{2\beta}\{(j,k): |z_{jk}| > 1\} = 0$. Also z is not statistically bounded. Thus $G_x = (-\infty, 1)$ and $F_x = (0, \infty)$ so that $st_{2\beta} - \lim Supz = 1$

1 and $st_{2\beta} - limInf z$. Moreover $\Gamma_x(2\beta) = \{0,1\} = \Lambda_x(2\beta)$ and z is neither 2β -statistically nor statistically convergent. In this example we see that z is 2β –statistically bounded but not 2β –statistically convergent. On the other hand in example 2.1 y is statistically convergent and not 2β –statistically bounded.

Also note that $st_{2\beta} - \lim Supz$ equals the greatest element of $\Gamma_x(2\beta)$ while $st_{2\beta} - \lim fz$ is the least element $\Gamma_x(2\beta)$. This observation suggests the following.

Theorem 2.7

(a) If $l_1 = st_{2\beta} - \lim Supx$ is finite, then for every positive number ε

(i) $\delta_{2\beta}\{(j,k): |z_{jk}| > l_1 - \varepsilon\} \neq 0 \text{ and } \delta_{2\beta}\{(j,k): |z_{jk}| > l_1 + \varepsilon\} = 0.$

Conversely, if (i) holds for every $\varepsilon > 0$, then $l_1 = st_{2\beta} - \lim Supx$.

(**b**) if $l_2 = st_{2\beta} - \lim Infx$ is finite, then from every positive number ε

(ii) $\delta_{2\beta}\{(j,k): |z_{jk}| > l_2 + \varepsilon\} \neq 0 \text{ and } \delta_{2\beta}\{(j,k): |z_{jk}| > l_2 - \varepsilon\} = 0.$

Conversely, if (i) holds for every $\varepsilon > 0$ then $l_2 = st_{2\beta} - \lim Inf x$.

From definition 2.2 we see that the above theorem can be interpreted as showing that $st_{2\beta}$ – $\lim Supx$ and $st_{2\beta} - \lim Infx$ are the greatest and the least 2β -statistical cluster points of x.

Note that 2β –statistical boundedness implies that $st_{2\beta} - \lim Supx$ and $st_{2\beta} - \lim Infx$ are finite, so that properties (i) and (ii) of Theorem 2.7 hold.

III. **The Main Results**

Throughout this paper by $\delta_{2\beta}(K) \neq 0$; $K = \{(j,k) \in N \times \mathbb{N}\}$ we mean that either $\delta_{2\beta}(K) > 0$ or K does not have $2\beta - density$.

Theorem 3.1: For every real number sequence x, $st_{2\beta} - \lim Infx \le st_{2\beta} - \lim Supx$.

Proof: First consider the case in which $st_{2\beta} - \lim Supx = -\infty$, This implies that $G_x = \emptyset$, Therefore for every $g \in R$, $\delta_{2\beta}\{(j, k): x_{jk} > g\} = 0$, which implies that $\delta_{2\beta}\{(j, k): x_{jk} \le g\} = 1$. So that for every $f \in R$, $\delta_{2\beta}\{(j, k): x_{jk} < f\} \neq 0$. Hence $st_{2\beta} - \lim Infx = -\infty$,

Now consider $st_{2\beta} - \lim Supx = +\infty$. This implies that for every $\in R$, $\delta_{2\beta}\{(j, k): x_{jk} > g\} \neq 0$. This implies that $\delta_{2\beta}\{(j, k): x_{jk} \leq g\} = 0$. Therefore for every $f \in R$, $\delta_{2\beta}\{(j, k): x_{jk} < f\} = 0$, which implies that $F_x = \emptyset$. Hence $st_{2\beta} - \lim Infx = +\infty$.

Next assume that $l_1 = st_{2\beta} - \lim Supx < +\infty$ and let $l_2 = st_{2\beta} - \lim Infx$. Given $\varepsilon > 0$ we show that $l_1 + \varepsilon \in F_x$, so that $l_2 \le l_1 + \varepsilon$. By Theorem 2.7(a), $\delta_{2\beta} \left\{ (j,k) : x_{jk} > l_1 + \frac{\varepsilon}{2} \right\} = 0$, since $l_1 = lub \ G_x$. This implies that $\delta_{2\beta}\left\{(j,k): x_{jk} \le l_1 + \frac{\varepsilon}{2}\right\} = 1$, which in turn gives $\delta_{2\beta}\left\{(j,k): x_{jk} < l_1 + \varepsilon\right\} = 1$. Hence $l_1 + \varepsilon = F_x$ and so that $l_2 \leq l_1 + \varepsilon$ i.e $l_2 \leq l_1$ since ε was arbitrary.

Remark: For any double sequence $x = (x_{jk})$

 $st_2 - \lim Infx \le st_{2\beta} - \lim Infx \le st_{2\beta} - \lim Supx \le st_2 - \lim Supx$

where

 $st_2 - lim Supx = p - limSupx$

$$st_2 - \lim Infx = p - \lim Infx$$

Theorem 3.2: For any double sequence $x = x_{ik}$, 2β –statistical boundness implies 2β –statistical convergence if and only if

$$st_{2\beta} - \lim Infx = st_{2\beta} - \lim Supx.$$

Proof: Let $l_1 = st_{2\beta} - \lim Supx$ and $l_2 = st_{2\beta} - \lim Infx$. First assume that $st_{2\beta} - \lim x = L$ and $\varepsilon > 0$. Then $\delta_{2\beta}\{(j,k): |x_{jk} - L| \ge 0\} = 0$. So that

$$\delta_{2\beta}\{(j,k): x_{jk} > L + \varepsilon\} = 0$$

which implies that $l_1 \leq L$. Also

 $\delta_{2\beta}\{(j,k): x_{jk} > L - \varepsilon\} = 0,$

which implies that $L \le l_2$. By theorem 3.1, we finally have $l_1 = l_2$ Conversely, suppose $l_1 = l_2 = L$ and x be 2β -statistically bounded. Then for $\varepsilon > 0$, by Theorem 2.7 we have $\delta_{2\beta}\left\{(j,k): x_{jk} > l_1 + \frac{\varepsilon}{2}\right\} = 0$ and $\delta_{2\beta}\left\{(j,k): x_{jk} < l_1 - \frac{\varepsilon}{2}\right\} = 0$. Hence $st_{2\beta} - \lim x = L$

Theorem 3.3: If a double sequence $x = x_{jk}$ is bounded above and 2β – summable to the number $L = st_{2\beta}$ – lim Supx, then x is 2β – statistically convergent to L.

Proof: Suppose that $x = x_{jk}$ is not 2β – *stistically* convergent to L. Then by Theorem 3.2 $st_{2\beta}$ – lim Infx < 1L. So there is a number M < L such that $\delta_{2\beta}\{(j,k): x_{jk} < M\} \neq 0$.

Let $K_1 = \{(j,k): x_{ik} < M\}$, then for every $\varepsilon > 0$, $\delta_{2\beta}\{(j,k): x_{ik} > L + \varepsilon\} = 0$.

We write $K_2 = \{(j,k): M \le x_{jk} \le L + \varepsilon\}$ and $K_3 = \{(j,k): x_{jk} > L + \varepsilon\}$, and let $G = Sup_{jk} x_{jk} < \infty$, since $\delta_{2\beta}(K_1) \ne 0$, there are many n such that

$$\lim Sup_n \sum_{jk=0,0}^{\infty} b_{mnjk} (i) \ge d > 0$$

and for each n, i

$$\sum_{j,k=1,1}^{\infty\infty} \left| b_{mnjk} (i) x_{jk} \right| < \infty.$$

Now

$$\begin{split} \sum_{jk=1,1}^{\infty} b_{mnjk} & (i)x_{jk} = \left(\sum_{jk \in K_1} + \sum_{jk \in K_2} + \sum_{jk \in K_3}\right) b_{mnjk} & (i)x_{jk} \\ & \leq M \sum_{jk \in K_1} b_{mnjk} & (i) + (L + \varepsilon) \sum_{jk \in K_2} b_{mnjk} & (i) + G \sum_{jk \in K_3} b_{mnjk} & (i) \\ & = M \sum_{jk \in K_1} b_{mnjk} & (i) + (L + \varepsilon) \sum_{jk=1,1}^{\infty} b_{mnjk} & (i) - (L + \varepsilon) \sum_{jk \in K_1} b_{mnjk} & (i) + O(i) \\ & = -\sum_{jk \in K_1} b_{mnjk} & (i) [-M + (L + \varepsilon)] + (L + \varepsilon) \sum_{jk=1,1}^{\infty} b_{mnjk} & (i) + O(1) \\ & \leq L \sum_{jk=1,1}^{\infty} b_{mnjk} & (i) - d(L - M) + \varepsilon (\sum_{jk=1,1}^{\infty} b_{mnjk} & (i) - d) + O(1) \end{split}$$

Since ε is arbitrarily, it follows that

$$\lim \inf 2\beta x \le L - d(l - M) < L.$$

Hence x is not 2β – summable to L

Theorem 3.4: If the double sequence $x = (x_{jk})$ is bounded below and 2β – summable to the number $L = st_{2\beta} - lim \ln f x$, then x is 2β – statistically convergent to *L*.

Proof. The proof follows on the same lines as that of Theorem 3.3.

Note: It is easy to observe that in the above Theorems 3.3 and 3.4 the boundedness of $x = (x_{jk})$ can not be omitted or even replaced by the 2β – statistical boundedness.

For example consider the matrix
$$\beta = A = (a_{nk})_{n,k=1}^{\infty}$$
 and define $x = (x_{ik})$ by

$$x = x_{jk} = \begin{cases} 2k - 1, & \text{if } k \text{ is an odd square for all } j \\ 2, & \text{if } k \text{ is an even square for all } j \\ 1, & \text{if } k \text{ is an odd nonsquare for all } j \end{cases}$$

Then, $Sup x_{jk} = \infty$, but $G_x = [2, \infty)$, $F_x = (-\infty, 0]$, $st_{2\beta} - \lim Sup x = 2$, and $st_{2\beta} - \lim Inf x = 0$. [see [9])

This makes it clear that every bounded double sequence is st_2 – bounded and every st_2 – bounded sequence is $st_{2\beta}$ – bounded, but not conversely, in general.

IV. Conclusion

The double sequence which is bounded above and 2β -summable to the number $L = st_{2\beta} - \limsup x$, then it is 2β -statistically convergent to L. Similarly, a double sequence which is bounded below and 2β summable to the number $\ell = st_{2\beta} - \liminf x$, then it is 2β -statistically convergent to ℓ .

References

- [1] A. Pringsheim, Zur theoreie der zweifach unendlichen zahlenfolgen, Mathematical Annals. 53, 1900, 289–321.
- [2] A. R. Freedman and J. J. Sember, Densities and summability, Pacific Journal of Mathematics, 95, no. 2, 1981, 293–305.
- [3] R. C. Buck, Generalized asymptotic density, American. Journal of Mathematics. 75, 1953, 335 346
- [4] J. S. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis, 8, no. 1-2, 1988, 47-63.
- [5] E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13, 1981, 77-83.
- [6] E. Kolk, Inclusion relations between the statistical convergence and strong summability, *Acta et. Comm. Univ. Tartu. Math.* 2, 1998, 39–54.
- [7] M. Steiglitz, Eine verallgemeinerung des begriffs der fastdonvergenz, *Math. Japon*, *18*, 1973, 53–70.
- [8] M. Mursaleen and O. H. H. Edely, Generalized statistical convergence, Information Science, no. 162, 2004, 287 294.
- [9] A. M. Alotaibi, Cesáro statistical core of complex number sequences, International. Journal of Mathematics and Mathematical Science, Hindawi Publishing Corporation, 2007, Article ID 29869, 2007, pp 1–9.