Some forms of N-closed Maps in supra Topological spaces

L.Vidyarani and M.Vigneshwaran

Department of Mathematics Kongunadu Arts and Science College Coimbatore, Tamil Nadu, India.

Abstract: In this paper, we introduce the concept of N-closed maps and we obtain the basic properties and their relationships with other forms of N-closed maps in supra topological spaces. *Keywords:* supra N-closed map, almost supra N-closed map, strongly supra N-closed map.

I. Introduction:

In 1983, A.S.Mashhour et al [4] introduced the supra topological spaces and studied, continuous functions and s^{*} continuous functions. T.Noiri and O.R.Syed[5] introduced supra b-open sets and b-continuity on topological spaces.

In this paper, we introduce the concept of supra N-closed maps and study its basic properties. Also we introduce the concept of almost supra N-closed maps and strongly supra N-closed maps and investigate their properties in supra topological spaces.

II. Preliminaries:

Definition 2.1[4]

A subfamily μ of X is said to be supra topology on X if

i) $X, \phi \in \mu$

ii)If $A_i \in \mu \ \forall i \in j$ then $\bigcup A_i \in \mu$. (X, μ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^c .

Definition 2.2[4]

The supra closure of a set A is denoted by $cl^{\mu}(A)$, and is defined as supra $cl(A) = \cap \{B : B \text{ is supra closed and } A \subseteq B\}.$

The supra interior of a set A is denoted by $int^{\mu}(A)$, and is defined as supra $int(A) = \bigcup \{B : B$ is supra open and $A \supseteq B\}$.

Definition 2.3[4]

Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subseteq \mu$.

Definition 2.4[3]

Let (X, μ) be a supra topological space. A set A of X is called supra semi- open set, if $A \subseteq cl^{\mu}(int^{\mu}(A))$. The complement of supra semi-open set is supra semi-closed set. **Definition 2.5[1]**

Let (X, μ) be a supra topological space. A set A of X is called supra α -open set, if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$. The complement of supra α -open set is supra α -closed set.

Definition 2.6[5]

Let (X, μ) be a supra topological space. A set A of X is called supra Ω closed set, if $scl^{\mu}(A) \subseteq int^{\mu}(U)$, whenever $A \subseteq U$, U is supra open set. The complement of the supra Ω closed set is supra Ω open set.

Definition 2.7[5]

The supra Ω closure of a set A is denoted by $\Omega cl^{\mu}(A)$, and defined as is supra Ω closed and $A \subseteq B$.	$\Omega cl^{\mu}(A) = \cap \{B : B$
The supra Ω interior of a set A is denoted by Ω int ^{μ} (A), and defined as	$\Omega int^{\mu}(A) = \cup \{B : B$
is supra Ω open and $A \supseteq B$.	

Definition 2.8[6]

Let (X, μ) be a supra topological space . A set A of X is called supra regular open if $A = int^{\mu}(cl^{\mu}(A))$ and supra regular closed if $A = cl^{\mu}(int^{\mu}(A))$.

Definition 2.9[7]

Let (X, μ) be a supra topological space. A set A of X is called supra N-closed set if $\Omega cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$, U is supra α open set. The complement of supra N-closed set is supra N-open set. **Definition 2.10[7]**

The supra N closure of a set A is denoted by $Ncl^{\mu}(A)$, and defined as $Ncl^{\mu}(A) = \cap \{B : B \text{ is supra } N \text{ closed and } A \subseteq B\}.$

The supra N interior of a set A is denoted by Nint^{μ}(A), and defined as Nint^{μ}(A) = \cup {B : B is supra N open and A \supseteq B}.

Definition 2.11[7]

Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-continuous function if $f^{-1}(V)$ is supra N-colsed in (X, τ) for every supra closed set V of (Y, σ) .

Definition 2.12[7]

Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-irresolute if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra N-closed set V of (Y, σ) .

Notations: Throughout this paper $O^{\mu}(\tau)$ represents supra open set of (X, τ) and $N^{\mu}O(\tau)$ represents supra N-open set of (X, τ) .

III. Supra N-Closed Maps

Definition 3.1

A map $f:(X, \tau) \to (Y, \sigma)$ is called supra N-closed map(resp. supra N-open) if for every supra closed(resp. supra open) F of X, f(F) is supra N-closed(resp. supra N-open) in Y.

Theorem 3.2

Every supra closed map is supra N-closed map.

Proof

Let $f:(X, \tau) \to (Y, \sigma)$ be supra closed map. Let V be supra closed set in X, Since f is supra closed map then f(V) is supra closed set in Y. We know that every supra closed set is supra N-closed, then f(V) is supra N-closed in Y. Therefore f is supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.3

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}, \sigma = \{Y, \phi, \{a\}\}.$

 $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N-closed map but not supra closed map, since $V=\{b,c\}$ is closed in X but f $(\{b,c\}) = \{a,c\}$ is supra N-closed set but not supra closed in Y.

Theorem 3.4

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is supra N-closed iff $f(cl^{\mu}(V))=Ncl^{\mu}(f(V))$

Proof

Suppose f is supra N-closed map. Let V be supra closed set in (X, τ) . Since V is supra closed, $cl^{\mu}(V)=V$. f(V) is supra N-closed in (Y, σ) . Since f is supra N-closed map, then $f(cl^{\mu}(V))=f(V)$. Since f(V) is supra N-closed, we have $Ncl^{\mu}(f(V))=f(V)$. Hence $f(cl^{\mu}(V))=Ncl^{\mu}(f(V))$

Conversely, suppose $f(cl^{\mu}(V))=Ncl^{\mu}(f(V))$. Let V be supra closed set in (X, τ) , then $cl^{\mu}(V)=V$. since f is a mapping, f(V) is in (Y, σ) and we have $f(cl^{\mu}(V))=f(V)$. Since $f(cl^{\mu}(V))=Ncl^{\mu}(f(V))$, we have $f(V)=Ncl^{\mu}(f(V))$, implies f(V) is supra N-closed in (Y, σ) . Therefore f is supra N-closed map. **Theorem 3.5**

A map $f:(X, \tau) \to (Y, \sigma)$ is supra N-open iff $f(int^{\mu}(V))=Nint^{\mu}(f(V))$

Proof

Suppose f is supra N-open map. Let V be supra open set in (X, τ) . Since V is supra open, $int^{\mu}(V)=V$, f(V) is supra N-open in (Y, σ) . Since f is supra N-open map, Therefore $f(int^{\mu}(V))=f(V)$. Since f(V) is supra N-open, we have $Nint^{\mu}(f(V))=f(V)$. Hence $f(int^{\mu}(V))=Nint^{\mu}(f(V))$

Conversly, suppose $f(int^{\mu}(V))=Nint^{\mu}(f(V))$. Let V be a supra open set in (X, τ) , then $int^{\mu}(V)=V$. Since f is a mapping, f(V) is in (Y, σ) and we have $f(int^{\mu}(V))=f(V)$. Since $f(int^{\mu}(V))=Nint^{\mu}(f(V))$, we have $f(V)=Nint^{\mu}(f(V))$, implies f(V) is supra N-open in (Y, σ) . Therefore f is supra N-open map.

Remark:3.6

If $f:(X, \tau) \to (Y, \sigma)$ is supra N-closed map and $g: (Y, \sigma) \to (Z, v)$ is supra N-closed map then its composite need not be supra N-closed map in general and this is shown by the following example.

Example 3.7

Theorem:3.8

If $f:(X, \tau) \to (Y, \sigma)$ is supra closed map and $g: (Y, \sigma) \to (Z, v)$ is supra N-closed map then the composition gof is supra N-closed map.

Proof

Let V be supra closed set in X. Since f is a supra closed map, f(V) is supra closed set in Y. Since g is supra N-closed map, g(f(V)) is supra N-closed in Z. This implies gof is supra N-closed map.

IV. Almost supra N-closed map and strongly supra N-closed map .

Definition 4.1

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be almost supra N-closed map if for every supra regular closed set F of X, f(F) is supra N-closed in Y.

Definition 4.2

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be strongly supra N-closed map if for every supra N-closed set F of X, f(F) is supra N-closed in Y.

Theorem 4.3

Every strongly supra N-closed map is supra N-closed map.

Proof

Let V be supra closed set in X. Since every supra closed set is supra N-closed set, then V is supra N-closed in X. Since f is strongly supra N-closed map, f(V) is supra N-closed set in Y. Therefore f is supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.4

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{b\}, \{a, b\}, \{b, c\}\}.$

 $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N-closed map but not strongly supra N-closed map, since $V=\{a,b\}$ is supra N-closed set in X, but f $(\{a,b\}) = \{b,c\}$ is not a supra N-closed set in Y.

Theorem 4.5

Every supra N-closed map is almost supra N-closed map.

Proof

Let V be a supra regular closed set in X. We know that every supra regular closed set is supra closed set. Therefore V is supra closed set in X. Since f is supra N-closed map, f(V) is supra N-closed set in Y. Therefore f is almost supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.6

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b, c\}\},$ $\{a\}, \{c\}, \{a,c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a)=c, f(b)=b, f(c)=a. Here f is a l m ost supra N-closed map but it is not supra N-closed map, since V= $\{a, c\}$ is supra closed set in X but f($\{a, c\}$) = $\{a, c\}$ is not supra N-closed set in Y.

Theorem 4.7

Every strongly supra N-closed map is almost supra N-closed map.

Proof

Let V be supra regular closed set in X. We know that every supra regular closed set is supra closed set and every supra closed set is supra N-closed set. Therefore V is supra N-closed set in X. Since f is strongly supra N-closed map, f(V) is supra N-closed set in Y. Therefore f is almost supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.8

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{c\}, \{ac\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is a l m ost supra N-closed map but it is not strongly supra N-closed map, since $V=\{a\}$ is supra N-closed in X but $f(\{a\}) = \{b\}$ is not supra N-closed set in Y.

Theorem:4.9

If $f:(X, \tau) \to (Y, \sigma)$ is strongly supra N-closed map and $g: (Y, \sigma) \to (Z, \upsilon)$ is strongly supra N-closed map then its composition gof is strongly supra N-closed map.

Proof

Let V be supra N-closed set in X. Since f is strongly supra N-closed, then f(V) is supra N-closed in Y. Since g is strongly supra N-closed, then g(f(V)) is supra N-closed in Z. Therefore gof is strongly supra N-closed map.

Theorem 4.10

If $f:(X, \tau) \to (Y, \sigma)$ is almost supra N-closed map and $g: (Y, \sigma) \to (Z, \upsilon)$ is strongly supra N-closed map then its composite gof is almost supra N-closed map.

Proof

Let V be supra regular closed set in X. Since f is almost supra N-closed, then f(V) is supra N-closed set in Y. Since g is strongly supra N-closed, then g(f(V)) is supra N-closed in Z. Therefore gof is almost supra N-closed map.

Theorem 4.11

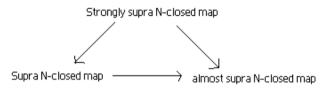
Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \upsilon)$ be two mappings such that their composition $gof:(X, \tau) \to (Z, \upsilon)$ be a supra N-closed mapping then the following statements are true:

- (i) If f is supra continuous and surjective then g is supra N-closed map
- (ii) If g is supra N-irresolute and injective then f is supra N-closed map.

Proof

- i) Let V be a supra closed set of (Y, σ) . Since f is supra continuous $f^{1}(V)$ is supra closed set in (X, τ) . Since gof is supra N-closed map, We have $(gof)(f^{1}(V))$ is supra N-closed in (Z, v). Therefore g(V) is supra N-closed in (Z, v), since f is surjective. Hence g is supra N-closed map.
- ii) Let V be supra closed set of (X, τ) . Since gof is supra N-closed, we have gof(V) is supra N-closed in (Z, υ) . Since g is injective and supra N-irresolute $g^{-1}(gof(V) \text{ is supra N-closed in } (Y, \sigma)$. Therefore f(V) is supra N-closed in (Y, σ) . Hence f is supra N-closed map.

Applications



V.

Definition:5.1

A supra topological space (X, τ) is $T_N^{\mu} - space$ if every supra N-closed set is supra closed in (X, τ) .

Theorem:5.2

Let (X, τ) be a supra topological space then

(i) $O^{\mu}(\tau) \subset N^{\mu}O(\tau)$

(ii) A space (X,
$$\tau$$
) is T_{N}^{μ} – space iff $O^{\mu}(\tau) = N^{\mu}O(\tau)$

Proof

(i) Let A be supra open set, then X-A is supra closed set. We know that every closed set is N-closed. Therefore X-A is N-closed, implies A is N-open. Hence $O^{\mu}(\tau) \subseteq N^{\mu}O(\tau)$

(ii) Let (X, τ) be $T_N^{\mu} - space$. Let $A \in N^{\mu}O(\tau)$, then X-A is N-closed, by hypothesis X-A is closed and therefore $A \in O^{\mu}(\tau)$. Hence we have $O^{\mu}(\tau) = N^{\mu}O(\tau)$. Conversely the proof is obvious

Theorem:5.3

If (X, τ) is $T_N^{\mu} - space$, then every singleton set of (X, τ) is either supra α -closed set or supra open set.

Proof

Suppose that for some $x \in X$, the set $\{x\}$ is not supra α -closed set of (X, τ) , then $\{x\}$ is not supra N-closed set in (X, τ) , Since we know that every α -closed set is supra N-closed set. So trivially $\{x\}^c$ is N-closed set. From the hypothesis $\{x\}^c$ is supra closed set in (X, τ) . Therefore $\{x\}$ is supra open set

Theorem:5.4

Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be supra N-closed map and $g: (Y, \sigma) \rightarrow (Z, v)$ be supra N-closed map then their composition gof: $(X, \tau) \rightarrow (Z, v)$ is a supra N-closed map if (Y, σ) is $T_N^{\mu} - space$.

Proof

Let V be a supra closed set in X. Since f is supra N-closed map, then f(V) is supra N-closed set in Y. Since Y is T_N^{μ} - space, f(V) is supra closed set in Y. Since g is supra N-closed map, we have g(f(V)) is supra N-closed in Z. Hence gof is a N-closed map.

Reference

- [1] R.Devi, S.Sampathkumar and M.Caldas, "On supra a open sets and sa-continuous maps, General Mathematics", 16(2)(2008),77-84.
- P.Krishna, Dr.J.Antony Rex Rodrigo, "On R-Closed Maps and R-Homeomorphisms in Topological Spaces", IOSR Journal [2] of Mathematics, 4(1)(2012),13-19.
- [3]
- N.Levine, "Semi-open sets and Semi-continuity in topological spaces", Amer.Math., 12(1991), 5-13. A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, "On supra topological spaces", Indian J.Pure [4] and Appl.Math.,14(A)(1983),502-510.
- T.Noiri and O.R.Sayed, "On Ω closed sets and Ω s closed sets in topological spaces", Acta Math,4(2005),307-318. [5]
- M.Trinita Pricilla and I.Arockiarani, "Some Stronger Forms of gub-continuous Functions", IOSR Journal of Engineering, 1(2), [6] 111-117.
- L.Vidyarani and M.Vigneshwaran, "On Supra N-closed and sN-closed sets in Supra topological Spaces", [7] Internatinal Journal of Mathematical Archieve, 4(2),2013,255-259.