bT-Locally Closed Sets and bT-Locally Continuous Functions In Supra Topological Spaces.

K.Krishnaveni And M.Vigneshwaran

Department of Mathematics Kongunadu Arts and Science College Coimbatore, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce a decompositions namely supra bT- locally closed sets and define supra bT-locally continuous functions. This paper also discussed some of their properties. *Keyword* S-BTLC set, S-BTL- continuous,S-BTL- irresolute.

Introduction

In 1983 Mashhour et al [8] introduced Supra topological spaces and studied S- continuous maps and S^{*}- continuous maps. In 2011,Bharathi.S[3] introduced and investigated several properties of generalization of locally b- closed sets. In 1997, Arokiarani .I[2] introduced and investigated some properties of regular generalized locally closed sets and RGL-continuous functions. In this paper, we define a new set called supra bT- locally closed and also define supra bT- locally continuous functions and investigated some of the basic properties for this class of functions.

II. Preliminaries

Definition 2.1[8,10] A subfamily of μ of X is said to be a supra topology on X, if

I.

(i) X, $\phi \in \mu$

(ii) if $A_i \in \mu$ for all $i \in J$ then $\cup A_i \in \mu$.

The pair (X,μ) is called supra topological space. The elements of μ are called supra open sets in (X,μ) and complement of a supra open set is called a supra closed set.

Definition 2.2[10] (i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is

defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed set and } A \subseteq B \}.$

(ii) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as

 $\operatorname{int}^{\mu}(A) = \bigcup \{ B : B \text{ is a supra open set and } A \supseteq B \}.$

Definition 2.3[8] Let (X,τ) be a topological spaces and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4[10] Let (X,μ) be a supra topological space. A set A is called a supra b-open set if A $\subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5[7] A subset A of a supra topological space (X,μ) is called bT^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$

whenever $A \subseteq U$ and U is T^{μ} - open in (X,μ) .

Definition 2.6[9] Let A and B be subsets of X. Then A and B are said to be supra separated, if $A \cap cl^{\mu}(B) = B \cap cl^{\mu}(A) = \phi$.

Definition 2.7[5] Let $(X,\tau) \rightarrow (Y,\sigma)$ be two topological spaces and $\tau \subseteq \mu$. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called supra continuous, if the inverse image of each open set of Y is a supra open set in X.

Definition 2.8[6] Let $(X,\tau) \rightarrow (Y,\sigma)$ be two topological spaces and μ and λ be supra topologies associated with τ and σ respectively. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called supra irresolute, if $f^{-1}(A)$ is supra open set of X for every supra open set A in Y.

Notations

S-BTLC^{*} denotes supra bT^* - locally closed set and S-BTLC^{**} denotes supra bT^{**} – locally closed set.

III. SUPRA bT-LOCALLY CLOSED SETS

Definition 3.1

Let (X,μ) be a supra topological space. A subset A of (X,μ) is called supra bT – locally closed set, if $A = U \cap V$, where U is supra bT – open in (X,μ) and V is supra bT – closed in (X,μ) . The collection of all supra bT- locally closed set S of X will be denoted by S-BTLC(X).

Remark 3.2

Every supra bT-closed set (resp. supra bT- open set) is S-BTLC.

Definition 3.3

For a subset A of supra topological space (X,μ) , $A \in S$ -BTLC^{*} (X,μ) , if there exist a supra bT- open set U and a supra closed set V of (X,μ) , respectively such that $A = U \cap V$.

Remark 3.4

Every supra bT-closed set (resp. supra bT-open set) is S-BTLC*.

Definition 3.5

For a subset A of supra topological space (X,μ) , $A \in S-BTLC^{**}(X,\mu)$, if there exist a supra open set U and a supra bT - closed set V of (X,μ) , respectively such that $A = U \cap V$.

Remark 3.6

Every supra bT-closed set (resp. supra bT-open set) is S-BTLC**.

Theorem 3.7 Let A be a subset of (X,μ) . If $A \in S$ -BTLC^{*} (X,μ) (or) S-BTLC^{**} (X,μ) then A is S-BTLC (X,μ) .

Proof Given $A \in S$ -BTLC^{*} (X,μ) (or) S-BTLC^{**} (X,μ) , by definition $A = U \cap V$, where U is supra bT- open set and V is supra closed set (or) U is supra open set and V is supra bT – closed set. By theorem 3.2 [7] every supra closed set is supra bT – closed set, therefore V is supra bT – closed set (or) every supra open set is supra bT – closed set, therefore U is supra bT – closed set. Then A is S-BTLC (X,μ) .

Example 3.8

Let X= {a,b,c} and μ = {X, ϕ , {a}, {b}, {a,b}}. In this (X, μ), S-BTLC^{*} (X, μ) and S-BTLC^{**} (X, μ) are the proper subset of S-BTLC (X, μ), because S-BTLC (X, μ) = P(X).

Theorem 3.9 Let A be a subset of (X,μ) . If $A \in S-LC(X,\mu)$ then A is S-BTLC (X,μ) .

Proof Given $A \in S$ -LC, by definition $A = U \cap V$, where U is supra open set and V is supra closed set. Since every supra open set is supra bT – open set and every supra closed set is supra bT – closed set. Then $A \in S$ -BTLC (X,μ)

The converse of the above theorem is not true from the following example.

Example 3.10

Let $X = \{a,b,c\}$ and $\mu = \{X,\phi,\{a\}\}$. S-LC $(X,\mu) = \{X,\phi,\{a\},\{b,c\}\}$ and S-BTLC $(X,\mu) = P(X)$. **Theorem 3.11** For a subset A of (X,μ) , the following are equivalent:

(i) $A \in \text{S-BTLC}^{**}(X,\mu)$

(ii) $A = U \cap bcl^{\mu}(A)$, for some supra open set U

- (iii) $bcl^{\mu}(A) A$ is supra bT- closed
- (iv) $A \cup [X-bcl^{\mu}(A)]$ is supra bT- open

Proof (i) \Rightarrow (ii): Given $A \in S$ -BTLC^{**}(X, μ), then there exist a supra open subset U and a supra bT- closed subset V such that $A = U \cap V$. Since $A \subset U$ and $A \subset bcl^{\mu}(A)$, then $A \subset U \cap bcl^{\mu}(A)$.

Conversely, we have $bcl^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap bcl^{\mu}(A)$. Therefore $A = U \cap bcl^{\mu}(A)$.

(ii) \Rightarrow (i): Let $A = U \cap bcl^{\mu}(A)$, for some supra open set U. Clearly, $bcl^{\mu}(A)$ is supra bT- closed and hence $A = U \cap bcl^{\mu}(A) \in S$ -BTLC^{**}(X, μ).

(ii) \Rightarrow (iii): Let $A = U \cap bcl^{\mu}(A)$, for some supra open set U. Then $A \in S$ -BTLC^{**}(X, μ). This implies U is supra open and $bcl^{\mu}(A)$ is supra bT – closed. Therefore $bcl^{\mu}(A)$ –A is supra bT – closed.

(iii) \Rightarrow (ii): Let U= X-[bcl^µ(A) –A].By (iii) U is supra bT- open in X. We know that every supra open is supra bT- open, therefore U is supra open in X. Then A = U \cap bcl^µ(A) holds.

(iii) \Rightarrow (iv): Let $Q = bcl^{\mu}(A) - A$ be supra bT - closed. Then $X - Q = X - [bcl^{\mu}(A) - A] = A \cup [X - bcl^{\mu}(A)]$. Since X-Q is supra bT - open, $A \cup [X - bcl^{\mu}(A)]$ is supra bT - open.

(iv) \Rightarrow (iii): Let $U = A \cup [X-bcl^{\mu}(A)]$. Since X-U is supra bT – closed and X-U = bcl^{\mu}(A) – A is supra bT – closed.

Definition 3.12

Let A be subset of (X,μ) . Then

(i) The supra bT-closure of a set A is denoted by $bT-cl^{\mu}(A)$, define as $bT-cl^{\mu}(A)=\cap\{B:B \text{ is supra bT-closed and } A\subseteq B\}$.

(ii) The supra bT-interior of a set A is denoted by bT-int^{μ}(A), define as bT-int^{μ}(A)= \cap {B:B is supra bT-open and B \subseteq A}.

Theorem 3.13 For a subset A of (X,μ) , the following are equivalent:

(i) $A \in \text{ S-BTLC } (X,\mu)$

(ii) $A = U \cap bT - cl^{\mu}(A)$, for some supra bT - open set U

- (iii) $bT-cl^{\mu}(A) A$ is supra bT-closed
- (iv) $A \cup [X-bT-cl^{\mu}(A)]$ is supra bT- open

Proof (i) \Rightarrow (ii): Given $A \in S$ -BTLC (X, μ), then there exist a supra bT - open subset U and a supra bT-closed subset V such that $A = U \cap V$. Since $A \subset U$ and $A \subset bT$ -cl^{μ}(A), then $A \subset U \cap bT$ -cl^{μ}(A).

Conversely, we have $bT-cl^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap bT-cl^{\mu}(A)$. Therefore $A = U \cap bT-cl^{\mu}(A)$.

(ii) \Rightarrow (i): Let $A = U \cap bT - cl^{\mu}(A)$, for some supra bT - open set U. Clearly, $bT - cl^{\mu}(A)$ is supra bT - closed and hence $A = U \cap bT - cl^{\mu}(A) \in S$ -BTLC (X, μ).

(ii) \Rightarrow (iii): Let $A = U \cap bT - cl^{\mu}(A)$, for some supra bT - open set U. Then $A \in S$ -BTLC (X,μ) . This implies U is supra bT - open and $bT - cl^{\mu}(A)$ is supra bT - closed. Therefore $bT - cl^{\mu}(A) - A$ is supra bT - closed.

(iii) \Rightarrow (ii): Let U= X- [bT-cl^µ(A) -A].By (iii) U is supra bT- open in X. Then A = U \cap bT-cl^µ(A) holds.

 $\begin{array}{ll} (iii) \Rightarrow (iv): & Let \ Q = bT - cl^{\mu}(A) \ -A \ be \ supra \ bT - closed. \ Then \ X - Q = X - \ [\ bT - cl^{\mu}(A) \ -A] = A \cup [X - bT - cl^{\mu}(A)]. \\ \text{Since } X - Q \ is \ supra \ bT - open, \ A \cup [X - bT - cl^{\mu}(A)] \ is \ supra \ bT - open. \end{array}$

(iv) \Rightarrow (iii): Let U = A \cup [X- bT-cl^µ(A)]. Since X-U is supra bT - closed and X-U = bT-cl^µ(A) -A is supra bT - closed.

Theorem 3.14 For a subset A of (X,μ) , the following are equivalent:

(i) $A \in S-BTLC^*(X,\mu)$

(ii) $A = U \cap cl^{\mu}(A)$, for some supra bT - open set U

- (iii) $bcl^{\mu}(A) A$ is supra bT- closed
- (iv) $A \cup [X-bcl^{\mu}(A)]$ is supra bT- open

Proof (i) \Rightarrow (ii): Given $A \in S$ -BTLC^{*} (X, μ), then there exist a supra bT - open subset U and a supra closed subset V such that $A = U \cap V$. Since $A \subset U$ and $A \subset cl^{\mu}(A)$, then $A \subset U \cap cl^{\mu}(A)$.

Conversely, we have $cl^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap cl^{\mu}(A)$. Therefore $A = U \cap cl^{\mu}(A)$.

(ii) \Rightarrow (i): Let $A = U \cap cl^{\mu}(A)$, for some supra bT - open set U. Clearly, $cl^{\mu}(A)$ is supra closed and hence $A = U \cap cl^{\mu}(A) \in S$ -BTLC^{*} (X, μ).

(ii) \Rightarrow (iii): Let $A = U \cap cl^{\mu}(A)$, for some supra bT - open set U. Then $A \in S-BTLC^*(X,\mu)$. This implies U is supra bT - open and $cl^{\mu}(A)$ is supra closed. Therefore $cl^{\mu}(A) - A$ is supra closed. We know that every supra closed is supra bT- closed, therefore $bcl^{\mu}(A) - A$ is supra bT - closed.

(iii) \Rightarrow (ii): Let U= X- [bcl^µ(A) -A].By (iii) U is supra bT- open in X. Then A = U \cdot cl^µ(A) holds.

(iii) \Rightarrow (iv): Let Q =bcl^µ(A) –A be supra bT -closed. Then X–Q = X– [bcl^µ(A) –A] = A \cup [X– bcl^µ(A)]. Since X–Q is supra bT - open, A \cup [X–bcl^µ(A)] is supra bT - open.

(iv) \Rightarrow (iii): Let $U = A \cup [X-bcl^{\mu}(A)]$. Since X–U is supra bT -closed and X–U = $bcl^{\mu}(A) - A$ is supra bT - closed.

Theorem 3.15 For a subset A of (X,μ) , if $A \in S$ -BTLC^{**} (X,μ) , then there exist an supra open set G such that $A = G \cap bT$ -cl^{μ}(A).

Proof Let $A \in S$ -BTLC^{**}(X, μ). Then $A = G \cap V \Rightarrow A \subset G$. Then $A \subset bT$ -cl^{μ}(A). Therefore, $A \subset G \cap bT$ -cl^{μ}(A). Also, we have bT-cl^{μ}(A) $\subset V$. This implies $A = G \cap V \supset G \cap bT$ -cl^{μ}(A) $\Rightarrow A \supset G \cap bT$ -cl^{μ}(A). Thus $A = G \cap bT$ -cl^{μ}(A).

Theorem 3.16 For a subset A of (X,μ) , if $A \in S$ -BTLC^{**} (X,μ) , then there exist an supra open set G such that $A = G \cap bcl^{\mu}(A)$.

Proof Let $A \in S$ -BTLC^{**}(X, μ). Then $A = G \cap V$, where G is supra open set and V is supra bT-closed set. Then $A = G \cap V \Rightarrow A \subset G$. Obviously, $A \subset bcl^{\mu}(A)$.

Therefore, $A \subseteq G \cap bcl^{\mu}(A)$. -----(1)

Also, we have $bcl^{\mu}(A) \subset V$. This implies $A = G \cap V \supset G \cap bcl^{\mu}(A) \Longrightarrow A \supset G \cap bcl^{\mu}(A)$(2)

From (1) and (2), we get $A = G \cap bcl^{\mu}(A)$.

Theorem 3.17 Let A be a subset of (X,μ) . If $A \in S$ -BTLC^{**} (X,μ) , then bT-cl^{μ}(A) –A is supra bT- closed and $A \cup [X-bT-cl^{<math>\mu$}(A)] is supra bT - open.

Proof Given $A \in S\text{-BTLC}^{**}(X,\mu)$. Then there exist a supra open subset U and a supra bT- closed subset V such that $A = U \cap V$. This implies $bT\text{-}cl^{\mu}(A)$ is supra bT- closed. Therefore, $bT\text{-}cl^{\mu}(A) - A$ is supra bT- closed. Also, $[X-[bT-cl^{\mu}(A)-A]] = A \cup [X-bT-cl^{\mu}(A)]$. Therefore $A \cup [X-bT-cl^{\mu}(A)]$ is supra bT - open.

Remark 3.18 The converse of the above theorem need not be true as seen from the following example.

Example 3.19 Let $X = \{a, b, c, d\}$ and $\mu = (X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{b, c\}, \{b$

and S-BTLC^{**}(X, μ) =P(X) – {{a,b,c},{a,b,d}}. If A = {a,b,c}, then bT-cl^{μ}(A) –A = {d} is supra bT- closed and A \cup [X-bT-cl^{μ}(A)] = A is supra bT – open but A \notin S-BTLC^{**}(X, μ).

Theorem 3.20 If $A \in S$ -BTLC^{*}(X, μ) and B is supra open, then $A \cap B \in S$ -BTLC^{*}(X, μ).

Proof Suppose $A \in S$ -BTLC^{*}(X, μ), then there exist a supra bT- open set U and supra closed set V such that $A = U \cap V$. So $A \cap B = U \cap V \cap B = (U \cap B) \cap V$, where $U \cap B$ is supra bT- open. Therefore, $A \cap B \in S$ -BTLC^{*}(X, μ).

Theorem 3.21 If $A \in S$ -BTLC(X, μ) and B is supra open, then $A \cap B \in S$ -BTLC(X, μ).

Proof Suppose $A \in S$ -BTLC(X, μ), then there exist a supra bT- open set U and supra bT - closed set V such that $A = U \cap V$. So $A \cap B = U \cap V \cap B = (U \cap B) \cap V$, where $U \cap B$ is supra bT- open. Therefore, $A \cap B \in S$ -BTLC(X, μ).

Theorem 3.22 If $A \in S$ -BTLC^{**}(X, μ) and B is supra closed, then $A \cap B \in S$ -BTLC^{**}(X, μ).

Proof Suppose $A \in S$ -BTLC^{**}(X, μ), then there exist a supra open set U and supra bT- closed set V such that $A = U \cap V$. So $A \cap B = U \cap V \cap B = U \cap (B \cap V)$, where $B \cap V$ is supra bT- closed. Hence, $A \cap B \in S$ -BTLC^{**}(X, μ).

IV. SUPRA bT- LOCALLY CONTINUOUS FUNCTIONS

In this section, we define a new type of functions called supra bT- locally continuous functions (S-BTL -continuous functions), supra bT – locally irresolute functions(S-BTL-irresolute) and study some of their properties.

Definition 4.1

Let (X,τ) and (Y,σ) be two topological spaces and $\tau \subseteq \mu$. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called S-BTLcontinuous (resp., S-BTL^{*}- continuous, and S-BTL^{**}- continuous), if f^{-1} (A) \in S-BTLC(X, μ),(resp., f^{-1} (A) \in S-BTLC^{*}(X, μ), and f^{-1} (A) \in S-BTLC^{**}(X, μ)) for each A $\in \sigma$.

Definition 4.2

Let (X,τ) and (Y,σ) be two topological spaces and μ and λ be a supra topologies associated with τ and σ respectively. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be S-BTL-irresolute(resp., S-BTL^{*}- irresolute, resp., S-BTL^{**}-irresolute) if f^{-1} (A) \in S-BTLC(X, μ),(resp., f^{-1} (A) \in S-BTLC^{*}(X, μ), resp., f^{-1} (A) \in S-BTLC^{**}(X, μ)) for each A \in S-BTLC(Y, λ)(resp., A \in S-BTLC^{*}(Y, λ), resp., A \in S-BTLC^{**}(Y, λ)).

Theorem 4.3 Let (X,τ) and (Y,σ) be two topological spaces and μ be a supra topology associated with τ . Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function. If f is S-BTL^{*}- continuous (or) S-BTL^{**-} continuous, then it is S-BTL-continuous.

Proof Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function. If f is S-BTL^{*}- continuous (or) S-BTL^{**-} continuous, by definition $f^{-1}(A) \in S$ -BTLC^{*}(X, μ), and $f^{-1}(A) \in S$ -BTLC^{**}(X, μ) for each $A \in \sigma$. By theorem 3.7, $f^{-1}(A) \in S$ -BTLC(X, μ). Then it is S-BTL- continuous.

Theorem 4.4 Let (X,τ) and (Y,σ) be two topological spaces and μ and λ be a supra topologies associated with τ and σ respectively. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function. If f is S-BTL-irresolute(resp., S-BTL^{*}- irresolute, and S-BTL^{**}-irresolute), then it is S-BTL- continuous(resp., S-BTL^{*}- continuous, and S-BTL^{**-}- continuous).

Proof Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function. Let A is supra closed of Y. By theorem 3.2[7] every supra closed set is supra bT-closed set, therefore A is supra bT – closed set. Since f is S-BTL-irresolute(resp., S-BTL^{*}-irresolute), f^{-1} (A) is S-BTL-closed. Therefore f is S-BTL-continuous (resp., S-BTL^{*}- continuous, and S-BTL^{**}- continuous).

Theorem 4.5 If g:X \rightarrow Y is S-BTL- continuous and h: Y \rightarrow Z is supra continuous, then hog: X \rightarrow Z is S-BTL- continuous.

Proof Let $g:X \to Y$ is S-BTL- continuous and h: $Y \to Z$ is supra continuous. By definition, $g^{-1}(V) \in S$ -BTLC(X), $V \in Y$ and $h^{-1}(W) \in Y$, $W \in Z$. Let $W \in Z$, then $(hog)^{-1}(W) = (g^{-1}h^{-1})(W) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in Y$. This implies, $(hog)^{-1}(W) = g^{-1}(V) \in S$ -BTLC(X), $W \in Z$. Hence hog is S-BTL- continuous.

Theorem 4.6 If $g:X \rightarrow Y$ is S-BTL-irresolute and h: $Y \rightarrow Z$ is S-BTL-continuous, then hog : $X \rightarrow Z$ is S-BTL- continuous.

Proof Let $g:X \rightarrow Y$ is S-BTL-irresolute and $h: Y \rightarrow Z$ is S-BTL-continuous. By definition, $g^{-1}(V) \in S$ -BTLC(X), for $V \in S$ -BTLC(Y) and $h^{-1}(W) \in S$ -BTLC(Y), for $W \in Z$. Let $W \in Z$, then $(hog)^{-1}(W) = (g^{-1}h^{-1})(W) = g^{-1}(h^{-1}(W)) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in S$ -BTLC(Y). This implies, $(hog)^{-1}(W) = g^{-1}(V) \in S$ -BTLC(X), $W \in Z$. Hence hog is S-BTL- continuous.

Theorem 4.7 If g:X \rightarrow Y and h: Y \rightarrow Z are S-BTL- irresolute, then hog : X \rightarrow Z is S-BTL- irresolute.

Proof By the hypothesis and the definition, we have $g^{-1}(V) \in S$ -BTLC(X), for $V \in S$ -BTLC(Y) and and $h^{-1}(W) \in S$ -BTLC(Y), for $W \in S$ -BTLC(Z).Let $W \in S$ -BTLC(Z), then $(hog)^{-1}(W) = (g^{-1}h^{-1})(W) = g^{-1}$ ($h^{-1}(W) = g^{-1}(V)$, for $V \in S$ -BTLC(Y). Therefore, $(hog)^{-1}(W) = g^{-1}(V) \in S$ -BTLC(X), $W \in S$ -BTLC(Z). Thus, hog is S-BTL- irresolute.

References

- [1] D.Andrijevic", On b- open sets", mat. Vesnik 48(1996), no.1-2,59-64.
- [2] Arokiarani I, Balachandran. K and Ganster .M, "Regular Generalized locallyclosed sets and RGL-continuous functions", Indian J. pure appl. Math., 28 (5): May(1997) 661-669.
- [3] Bharathi. S, Bhuvaneswari.K,and Chandramathi.N, "Generalization of locally b- closed sets",*International Journal of Applied Engineering Research*, Volume 2, (2011) No 2.
- [4] Bourbaki, "General Topology", Part I, Addison Wesley(Reading, Mass) (1996).
- [5] Devi.R., Sampathkumar S. & Caldas M.," On supra α -open sets and S α continuous functions", *General Mathematics*, 16(2),(2008),77-84.
- [6] Ganster M.& Reilly I.L.," Locally closed sets and LC continuous functions", International J.Math. and Math.Sci., 12, (1989)417-424.
- [7] Krishnaveni.K and Vigneshwaran.M, "On bT-Closed sets in supra topological Spaces, On supra bT- closed sets in supra topological spaces", *International journal of Mathematical Archive*-4(2),2013,1-6.
- [8] A.S.Mashhour, A.A.Allam, F.S.Mohamoud and F.H.Khedr,"On supra topological spaces", *Indian J.Pure and Appl.Math.No.4*, 14 (1983),502-510.
- [9] Ravi.O., Ramkumar. G & Kamaraj .M ,"On supra g-closed sets", International Journal of Advances in pure and Applied Mathematics, 1(2), [2010] 52-66.
- [10] O.R. Sayed and Takashi Noiri," On b-open sets and supra b- Continuity on opological spaces", European Journal of Pure and applied Mathematics, 3(2)(2010), 295-302.