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Abstract: The effects of variable Fluid Properties like variation of permeability, porosity, thermal conductivity and 

magnetic field on Mixed Convection Heat transfer from Vertical Heated Plate Embedded in a Sparsely Packed 

Porous Medium have been approached numerically. The boundary layer flow in the porous medium is governed by 

Lapwood – Forchheimer – Brinkman extended Darcy model and the Lorentz force.  The natures of these equations 

are highly non-linear and coupled each other. The non-linear differential equations are non-dimensionalised using 

the non-dimensional parameter involving Grashoff number Gr, Prandtl number Pr, Hartmann number M, Eckert 

number E and so on. Similarity transformations are employed and the resulting ordinary differential equations are 
solved numerically by using shooting algorithm with Runge – Kutta and Newton – Raphson method to obtain 

velocity and temperature distributions. Besides, skin friction and Nusselt number are also computed for various 

physical parameters governing the problem under consideration.  It is found that the inertial parameter has a 

significant influence in decreasing the flow field, whereas its influence is reversed on the rate of heat transfer for all 

values of permeability considered. The effect of Magnetic field is diminution with velocity of the fluid flow. Further, 

the obtained results under the two limiting conditions were found to be in good agreement with the existing results. 

Keywords: Heat transfer, MHD, Newtonian fluid, porous medium, similarity solution. 

 

I. Introduction 
 For past decades, flow through porous medium has received attention of many researches because of its 

extensive applications in chemical engineering, enhanced recovery of petroleum resources, packed bed reactors etc. 

The study of mixed convection (free and forced convection) in porous medium has also been given much attention 
in the recent years. Considerable attention has been evinced on the study of boundary layer flow behavior and heat 

transfer characteristics of Newtonian fluid past and/or through a vertical plate embedded in a fluid saturated porous 

medium because of its wide spectrum of applications in engineering processes. Many Investigators have obtained 

similarity solutions for the problem of free convection heat transfer from a vertical plate embedded in a fluid 

saturated porous medium. Merkin[1] gave a similarity analysis of a combined free and forced convection flow past 

an isothermal semi-infinite vertical plate.  The combined free and forced convection from vertical plates in porous 

media has been investigated by Ranganathan and Viskanta[2]. All the above mentioned studies treat the 

permeability and conductivity or thermal resistance of the medium as constants.  Hsieh et al[3] have obtained non-

similar solution for combined convection from vertical plates in porous media with variable surface temperature or 

heat flux. 

 The convection of liquid metal under the influence of a magnetic field has been studied extensively. 
Pioneering studies on the effect of a magnetic field on the convection of electro-conducting materials were basically 

carried out in the fields of the geophysics and cosmology and were related to convection of the Earth’s mantle or of 

gas in a space which was analyzed by Saltzmann [4]. Aldoss et al [5] have studied mixed convection from a vertical 

plate embedded in a porous medium in the presence of magnetic field.  Several investigators have studied the effect 

of the magnetic field on the free convection flow over a semi-infinite vertical plate.  Nield and Bejan[6] studied 

Darcy flow in an isotropic medium with the effect of a magnetic field and the flow in a medium with anisotropic 

permeability. He found the effect of uniform applied magnetic field is to reduce the effective permeability in the 

case of boundary layer flow. Elbashbeshy[7]  investigated Heat and mass transfer along a vertical plate with variable 

temperature and concentration in the presence of magnetic field. 

 In some industrial applications, such as fixed-bed catalytic reactors, packed bed heat exchangers and 

drying, the value of the porosity is maximum at the wall and minimum away from the wall so the porosity of the 

porous medium should be taken as non – uniform.  Porosity measurements by Shwartz and Smith[8] and Benenati 
and Brosilow[9] show that porosity is not constant but varies from the wall to the interior of the porous medium due 

to which permeability also varies. Chandrasekhara et al[10] has incorporated the variable permeability to study the 

flow past and through a porous medium and have shown that the variation of porosity and permeability has greater 
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influence on velocity distribution and on heat transfer.  On the other hand, Chandrasekhar and Namboodiri [11] have 

shown the effectiveness of variable permeability of the porous medium on velocity distribution and heat transfer.  

Nevertheless, the inertia effects become important in a sparsely packed porous medium and hence their effect on 
mixed convection problems needs to be investigated.  Mohammadein and El-shaer[12] studied mixed convective 

flow past a semi-infinite vertical plate embedded in a porous medium incorporating the variable permeability in 

Darcy’s model.  Sri Hari Babu and Ramana Reddy [13] discussed the effects of mass transfer on MHD mixed 

convection flow past an infinite vertical plate with ohmic heating and viscous dissipation. Mahinder Singh et al 

[14]studied by considering the effect of uniform vertical magnetic field and uniform vertical rotation on 

thermosolutal convection in a layer of an electrically conducting couple-stress fluid heated and soluted from below. 

Recently, Pal and Shivakumar[15] analyzed mixed convection heat transfer from a vertical heated plate embedded in 

a Newtonian fluid sparsely packed porous medium by considering the variation of permeability, porosity and 

thermal conductivity. Dulal Pal[16] studied magneto hydrodynamic non-Darcy mixed convection heat transfer from 

a vertical heated plate embedded in a porous medium with variable porosity, by taking the viscous dissipation term 

in the energy equation. Pal[17] also made analysis of mixed convection heat transfer in the boundary layers on an 
exponentially stretching surface with magnetic field. Nalinakshi et al[18] found numerical solutions for heat transfer 

from a vertical heated plate embedded in a Newtonian fluid sparsely packed porous medium considering the variable 

fluid properties with the influence of inertial parameter. 

 The aim of the present investigation is therefore, to study systematically and numerically the effect of 

inertial terms on combined free and forced convective heat transfer past a semi-infinite vertical plate embedded in a 

saturated porous medium in the presence of magnetic field with variable permeability, porosity and thermal 

conductivity.  In this analysis coupled non-linear partial differential equations, governing the problem, are first 

reduced to the ordinary differential equations by similarity transformations and then the resultant boundary value 

problem is converted into the system of five simultaneous equations of first-order for five unknowns. These 

equations are then solved numerically to obtain velocity distributions and temperature profiles for various values of 

physical parameters. The results obtained are compared in the absence of magnetic field with the numerical 

computation under limiting conditions agree well with the existing ones and thus verifies the accuracy of the method 
used. 

 

II.  Mathematical Formulation 
We consider two-dimensional steady flow of a laminar, incompressible, viscous, electrically conducting 

fluid past a semi-infinite vertical heated plate embedded in a sparsely packed Newtonian fluid saturated porous 

medium of variable porosity, permeability and thermal conductivity. A uniform transverse magnetic field is applied 

to the plate. The flow is assumed to be dominated by viscous, Lorentz and pressure forces with inertia.  The plate is 

assumed to be electrically non-conducting, as many fluids used in the laboratory, the conductivity is usually small. 

The x-coordinate is measured along the plate from its leading edge, and y-coordinate normal to it (see fig.1). Let U0 
be the velocity of the fluid in the upward direction and the gravitational field, g, is acting in the downward direction. 

The plate is maintained at a uniform temperature Tw which is always greater than the free stream values existing far 

from the plate (i.e.  TTw ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Fig.1. Physical configuration  of the problem 

 The boundary layer equations governing the conservation law of mass, momentum and energy (heat) for 

incompressible steady viscous and electrically conducting flow can be written in the following form: 
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 where u and v are the velocity components along the x and y direction, respectively, T is the temperature of 

the fluid,  is the fluid density,  is the effective viscosity of the fluid,  is the fluid viscosity, k(y) is the variable 

permeability of the porous medium, )(y is the porosity of the saturated porous medium, )(y is the variable 

effective thermal diffusivity of the medium, F is the empirical constant of the second –order resistance term due to 

inertial effect, Cp is the specific heat at constant pressure, 
 
is the coefficient of volume expansion. 0B is the 

applied magnetic field, m is the electrical conductivity. 

 The above governing equations need to be solved subject to the following boundary conditions on velocity 

and temperature fields: 

0u    ,    ,0v    wTT                    at 0y                                                      (4) 

oUu   ,    ,0v    TT                   as y                                                      (5) 

Since the flow field is uniform at a sufficiently large distance from the porous surface, so in the free stream 

,0Uu  where 0U is the free stream velocity and T is the ambient temperature. 

We now introduce the following  dimensionless variables  and f as well as the similarity variable   - see 

Mohammadein and El-shaer [12]: 
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Where a prime represents differentiation with respect to  . 

 Here we consider the variable permeability )(k , variable porosity )(  and variable thermal 

conductivity   to decrease exponentially with the normal distance to the wall, from a value close to one at the 

solid boundaries to ko, εo and 0 value at the edge of the boundary layer [see Chandrasekhara and 

Namboodiri(1985)]. 
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Where ko , εo and 0 are the permeability , porosity and conductivity  respectively at the edge of the boundary 

 layer, respectively. d and d* are treated as constants having values 3.0 and 1.5 respectively, for variable 

permeability (VP)and d = d*= 0 for uniform permeability (UP). where    * is the ratio of the thermal conductivity 

of solid to the conductivity of the fluid. 

Substituting (6) and (7) in Equations (2) and (3), we get the following transformed equations: 
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where, 2
1

2* / oo kxF   is the local inertial parameter, 
oPr  is the Prandtl number,  *

is the 

ratio of viscosities, )(2

 TTCUE wpo
 is the Eckert number, 

oo xk  2   is the local permeability 

parameter, vxUoRe  is the local Reynolds number and 
23)( vxTTgGr w    is the local Grashof 

number and 
)( 0

2

02

U

xB
M m




  is the local magnetic field parameter. 

The transformed boundary conditions are: 

,0f ,0f  1     at   0
                                                                    (13) 

,1f  0               as    
                                                                                                          (14) 

Once the velocity and temperature distributions are known, the skin friction and the rate of heat transfer can be 

calculated respectively by 

Re)0(f                                                                                                                                                (15) 

)0(ReNu                                                                                                                                               (16) 

where   is the skin friction and Nu is the Nusselt  number. 

 

III.    Numerical Method 
 Equations (11) and (12) constitute a highly non-linear coupled boundary value problem  of third and second 

order respectively. An improved numerical scheme involving shooting technique with Runge-Kutta-Fehlberg 

method is developed to solve the resulting nonlinear boundary value problem. Thus, the coupled nonlinear boundary 

value problem of third-order in f and second-order in    has been reduced to a system of five simultaneous 

equations of first-order for five unknowns as follows  (see vajravelu[19]): 
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where ,1 ff    ,2 ff  ,3 ff   ,4 f 5f   and a prime denotes differentiation with respect to 
 

The boundary conditions now become 

0at         1f   ,0f   ,0 421  f                                                                                                              (18) 

      as                   0f    ,1 42f                                                                                                       (19) 

 To solve the system of first-order differential equations  along with boundary conditions , we need five 

initial conditions, but we have only two initial condition on f and one initial condition on θ. The third condition on f 

 )0(.. fei   and second condition on  )0(..  ei  are not prescribed, which are determined by employing numerical 

shooting method and using the two ending boundary condition given in Eq.(19). The selection of an appropriate 

finite value of  to be made. A good guess of the initial condition in the shooting technique is to be made on which 

the convergence depends. The iterative process is terminated when the difference between two successive values 

reached 10-6, then the solution is said to have converged results. The slight deviation in the values may be due to the 
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use of Runge-Kutta-Fehlberg method which has fifth order accuracy whereas, Mohammadein and El-Shaer[12] have 

used fourth-order Runge-Kutta method which has only fourth order accuracy. Thus the present results are more 

accurate compared to their results. 
 

IV.  Results and Discussion 

 The system of first-order differential equation (17) - (19) is solved numerically using shooting technique 

with Runge-kutta-Fehlberg method. In order to know the accuracy of the method used, computed values of )0(f   

and )0(  were obtained for 0M    ,0   and compared with those obtained by Mohammadein and El-shaer 

(2004) in Table 1 for the variable permeability ( d=3.0, d*=1.5) case and good agreement has been obtained with 

their results. The values tabulated in Table 1 for 7.0& 0.71Pr  0.1,E  ,4.00  with selected values of 

.Re/ and  , Re/ **2 Gr  
Table 2 contain the computed values of )0(f  and )0(  for the selected values of 

,  M, ,Gr/Re Re,/ **2*  and for uniform permeability (UP) and variable permeability (VP) cases,  it is 

observed that an increase in the value of 
* is to increase the skin friction for all the values of Re/*   and 

2Re/Gr in the case of both UP and VP. Further, it is interesting to note that the effect of 
* is to increase the skin 

friction. Also from Table 2 it is analyzed that increase in the value of *  is to decrease the rate of heat transfer for 

lower value of 2Re/Gr  for both UP and VP but reverse trend is seen for higher values of 2Re/Gr . Further, it is 

noted that the effect of * is to increase the rate of heat transfer for UP whereas reverse trend is seen in the case of 

VP. 

Table 1: Results for )0(f   and )0(   for Pr = 0.71 and 7.0, 0.0*   for variable permeability case 

M *
 2Re

Gr

 

Re 

*





 

Present value Mohammadein and El-shaer 

Pr = 0.71 Pr =7.0 Pr = 0.71 Pr =7.0 

)0(f 
 

)0(
 

)0(f 
 

)0(
 

)0(f 
 

)0(
 

)0(f   
)0(

 

0.0 2.

0 

0.2 0.0 0.61304 0.38234 0.495610 0.69497 0.61215 0.38030 0.49631 0.70036 

 0.1 0.64626 0.38456 0.541172 0.69985 0.64526 0.38281 0.54207 0.70710 

0.5 0.75727 0.39007 0.67750 0.71157 0.75527 0.38959 0.67950 0.71752 

0.5 0.0 0.958165 0.403109 0.70020 0.60921 0.95816 0.40308 0.70939 0.71977 

0.1 0.986898 0.406527 0.783450 0.614680 0.97432 0.40325 0.74475 0.72072 

0.5 1.15432 0.43264 0.934562 0.614656 1.03790 0.40400 0.85815 0.71907 

2.0 0.0 2.32158 0.39426 1.64207 0.59680 2.31558 0.40376 1.57329 0.63482 

0.1 2.31601 0.40038 1.662080 0.59212 2.30204 0.40442 1.58880 0.63099 

0.5 2.28321 0.41096 1.83220 0.58656 2.26307 0.40601 1.64517 0.61714 

4.

0 

0.2 0.0 0.627031 0.504676 0.51382 0.91234 0.62705 0.50459 0.50375 0.89314 

0.1 0.681575 0.507192 0.55848 0.925677 0.65772 0.50664 0.54839 0.90091 

0.5 0.859094 0.519451 0.68500 0.929532 0.76231 0.51242 0.68357 0.91428 

0.5 0.0 0.993653 0.528672 0.72885 0.92676 0.99206 0.52979 0.72562 0.91552 

0.1 1.022091 0.528510 0.76001 0.92753 1.00403 0.52940 0.75906 0.91694 

0.5 1.08649 0.528002 0.87124 0.92868 1.05649 0.52858 0.86809 0.91701 

2.0 0.0 2.41932 0.52779 1.62966 0.83124 2.41602 0.53103 1.62455 0.81893 

0.1 2.40021 0.52998 1.64827 0.83099 2.39539 0.53201 1.63682 0.81623 

0.5 2.29886 0.53124 1.69368 0.82122 2.28866 0.53467 1.68361 0.80587 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Effects of Variable Fluid Properties and MHD on Mixed Convection Heat Transfer from a Vertical  

www.iosrjournals.org                                                        25 | Page 

Table 2: Results for )0(f  and )0(  for 4.00.1,Ec  ,71.0Pr 0   for uniform permeability (UP) and variable 

permeability (VP). 

M *  

Re/* 

 

2Re/Gr  *  
UP VP 

)0(f   )0(   )0(f   )0(   

0.0 2.0 0.1 0.0 0.0 0.456893 0.300826 0.467886 0.396778 

0.1 0.570024 0.326784 0.573214 0.399978 

0.5 0.994532 0.456781 0.984919 0.524678 

0.9 1.304657 0.700567 1.294623 0.800321 

0.1 0.0 0.559087 0.299945 0.553608 0.386262 

0.1 0.679265 0.356782 0.682864 0.414960 

0.5 1.159872 0.713457 1.135678 0.800032 

0.9 1.364879 0.800267 1.354657 0.834567 

0.2 0.0 0.668432 0.302458 0.685034 0.396120 

0.1 0.784567 0.306892 0.793051 0.399673 

2.0 0.1 2.264556 0.425674 2.262345 0.419082 

0.5 0.2 0.0 0.924356 0.398543 0.926342 0.437865 

4.0 0.1 0.0 0.1 0.548945 0.480678 0.569842 0.548623 

0.5 0.948720 0.700467 0.967454 0.741265 

0.2 0.1 0.665684 0.523678 0.673454 0.554929 

0.5 1.003451 0.624563 1.024656 0.654667 

1.0 2.0 0.1 0.2 0.0 0.965478 0.356912 0.976456 0.394134 

0.1 1.231065 0.367823 1.237803 0.400345 

0.5 1.481910 0.398795 1.503830 0.426574 

2.0 0.1 2.321546 0.456321 2.331602 0.445354 

0.5 2.0 0.0 0.999854 0.423456 1.003782 0.413678 

4.0 0.1 0.2 0.1 0.775892 0.625489 0.786724 0.642363 

0.5 1.494300 0.536123 1.504808 0.544071 

5.0 2.0 0.1 0.2 0.0 1.358431 0.415678 1.365432 0.435216 

0.1 1.454890 0.427856 1.465390 0.446782 

0.5 1.668054 0.448961 1.689042 0.458653 

2.0 0.1 2.435765 0.426718 2.446790 0.435673 

0.5 2.0 0.0 1.504789 0.419836 1.524789 0.423478 

4.0 0.1 0.2 0.1 1.327643 0.638956 1.345626 0.642345 

0.5 1.765902 0.538713 1.856409 0.547658 

10.0 2.0 0.1 0.2 0.0 1.534662 0.467843 1.756765 0.556765 

 

Fig.2. shows the nusselt number variations with different prandtl numbers and * for both UP and VP cases, lower 

the prandtl no. with the increase * and Gr/Re2 the heat transfer is slightly increasing and decreasing in low range, 

higher the prandtl no. with the increase of  * and Gr/Re2 the heat transfer is slightly increasing and then decreasing 

in high range. For a very small value of M the results are comparable with the existing Mohammedein and El-shaer. 

 

Fig.3. shows the velocity distribution for various values of magnetic field parameter M for variable permeability 
case. Here the force due to magnetic field acts as an accelerating force and reduces the frictional resistance which 

leads to velocity profile increase as we increase the value of M within the boundary layer and the boundary layer 

increases with decrease in the value of M. 

 

Fig.2.Nusselt number for various Gr/Re2,
* and Pr for UP and VP 

Fig.4. shows the variation of velocity distribution for various values of second-order resistance (Forchheimer drag) 

for variable permeability case. Due to the effect of more resistance by the porous medium to the fluid flow we 
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observe that, increase in the value of inertial parameter * leads to increase in the velocity profile within the 

boundary layer. We also observe that the boundary layer thickness also decreases with an increase in the value of 

inertial parameter. 

Fig.5. shows the variation of velocity distribution for different values of the parameter 2Re/Gr for both the cases of 

UP and VP. In determining the combined flow the magnitude of 2Re/Gr shows the relative importance.  Here we 

see that increase in the value of 2Re/Gr  increases the velocity distribution for both the cases and it is very 

significant for higher value of 2Re/Gr in the boundary layer. For some particular value of 2Re/Gr the velocity 

profile is found to be less for VP as compared to UP. Further, it is clear that the boundary layer decreases with 

increase in the value of 2Re/Gr .The free convection currents obtained during the process of cooling of plate  induce 

the mean velocity to increase. Thus increase in the values of 2Re/Gr have the tendency to increase the buoyancy 

effects causing more induced flow along the plate in the vertical direction reflected by the increase in the fluid 

velocity. 

 

 

Fig. 3. Velocity profiles for different values of M for VP 

 
Fig.4. Velocity profiles for different values of * for VP 

 

Fig.6. shows the variations of velocity profiles for various values of Re/*  for both UP and VP. It is clearly seen 

that the velocity profile increases with an increase in Re/*  . The velocity profiles for VP are less compared to UP 

which can be clearly observed for higher values of Re/*  . 

Fig.7.shows the velocity profiles for different values Prandtl numbers for both VP and UP case. It is observed that 
the velocity profiles decreases as the Prandtl number increases which is very significant in the boundary layer, and 

also the boundary layer decreases with decrease in the value of Pr. 
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Fig.8. shows the temperature profiles for various values of magnetic parameter M for VP,  it is seen that the 

temperature profile decreases  for all values of magnetic parameter M within the boundary layer. In the absence of 

Magnetic parameter the results are compared with the existing results. 

Fig.9. shows the temperature distribution for various values of second order resistance * for both UP and VP cases. 

Here the temperature profile decreases for * = 0.0 within the boundary layer and also for higher values of * , 

temperature continuously decreases, which means rate of cooling is much faster for higher values of second  order 

resistance in both the cases. 

Fig.10. shows the temperature profiles for various values of 2Re/Gr for both UP and VP cases. It is observed that 

increase in the value of 
2Re/Gr  decreases the temperature distribution in both the cases. 

Fig.11. is the plot of variations of temperature profiles for various values of Re/*  for both UP and VP. Here it 

is noted that the temperature profiles increases with decreasing the value of Re/*   within the boundary layer for 

both UP and VP cases. It is observed that temperature in the boundary layer is less for VP case for all values of 

Re/*  . This fact shows that the rate of cooling is much faster in the case of UP for all values of Re/*  . 

Fig.12. shows the variation of temperature profiles for various values of *  for UP and VP cases. From this figure it 

is evident that the temperature profile increases by increasing the values of * within the boundary layer for both UP 

and VP cases. The effect of * is to increase the temperature in the boundary layer and temperature for UP is always 

less compared to VP case. 

Fig.13.shows the temperature profiles for various values of Prandtl numbers for VP case. The temperature profiles 

show a typical smooth decreasing pattern for lower Pr whereas, for higher values of Pr, the temperature continuously 

decreases at a steeper rate in the flow region and the boundary layer decreases. 

 

 
Fig.5. Velocity profiles for different values of Gr/Re2 for UP and VP 

 

 
Fig.6.Velocity profiles for different values of Re/*   for UP and VP 
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Fig.7. Velocity profiles for different values of Pr for VP 

 

 
Fig.8. Temperature profiles for various values of M for VP 

 

 

Fig. 9. Temperatur profiles for various values of 
* for VP 
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Fig.10. Temperature profiles for various values of Gr/Re2 for UP and VP 

 

 
Fig.11. temperatures profiles for various values of Re/*     for both UP and VP cases 

 

 

Fig. 12. Temperature profiles for various values of 
* for UP and VP 
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Fig. 13. Temperature profiles for various values of Pr for  VP 

 

V.  Conclusions 
 In this study, a numerical approach is made to study the effect of variable fluid properties like variable 

permeability, porosity and thermal conductivity on Mixed convection from a vertical heated plate embedded in a 

electrically conducting fluid saturated sparsely packed porous medium with an applied magnetic field normal to the 

plate. The boundary layer flow in the porous  medium is governed by Brinkman – Forchheimer extended Darcy 

model. The conservation equations governing the problem are reduced to a system of non-linear ordinary differential 

eequations by using similarity transformations which are highly coupled. These equations are then solved 

numerically by Runge – Kutta method with shooting technique. The computed results which are tabulated are shown 
graphically to illustrate the flow and heat transfer characteristics and also their dependence on various physical 

parameters. The following conclusions are drawn: 

1. The effect of magnetic field M is to increase the velocity distribution significantly and  there is decrease in the 

temperature distribution in the thermal boundary layer for variable permeability case. 

2. As the values of inertial parameter *  increases , there is a decrease in the boundary layer thickness for variable 

permeability case in case of both velocity and temperature profiles. 

3. Increase in the value of buoyancy parameter 2Re/Gr  leads to increase in the velocity closer to the vertical plate 

with peak value increase for higher values of  
2Re/Gr for both the cases of UP and VP, also to decrease the 

temperature profile in the boundary layer for both the cases of VP and UP. We observe that temperature profiles 

for VP are always less compared to UP. 

4. The velocity profile increases with an increase in Re/*  whereas the temperature profiles increases with 

decreasing the value Re/*  . The velocity and temperature profiles for VP are less compared to UP. 

5. The effect of increasing the values of * increases temperature, whereas the reverse trend is seen by increasing 

Pr in the thermal boundary layer for both UP and VP cases. 
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