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Abstract: Oscillatory behaviors of second order forced functional differential equation is considered. The 

oscillation of this equation is shown to be maintained under the effect of certain forcing terms, and the 

oscillatory equation can serve as mathematical tool for simulation of processes and phenomina observed in 

control theory. 
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I. Introduction 
 Oscillatory behaviors describe the behaviors of solutions of differential equations, while oscillation is a 

regular movement of the solutions between one position and another. 

Forced oscillations are obtained if we let an external force act on the body or if we simply add a new force to the 

existing force. The oscillation of a real valued function on an interval is the difference between its least upper 

bound and greatest lower bound there, the oscillation of a real valued function at a point x is the limit of the 

oscillation of the function on the interval ],[ exex   as e 0  

Functional differential equations of the form 

0''' 0  xcxx                                                                          (1) 

 Where mk /0   is the undamped oscillation frequency. (1) Shall be referred to as the damped 

oscillator equation. Its solution is called oscillatory if it has arbitrarily large number of zeros, otherwise the 

solution is said to be non oscillatory. An equation is said to be oscillatory if all of its solutions are oscillatory [5] 

The solution of an equation is called oscillatory if the sets of its zeros are unbounded from above, otherwise it is 

said to be nonoscillatory, and the equation is said to be oscillatory when all the solutions are oscillatory [4] 

The major problem in the theory of oscillation is the problem of maintaining oscillations under the effect of a 

forcing term. This study is therefore to investigate the effect of a forcing term on the unforced equation, and to 

investigate the criteria for selecting appropriate forcing terms. 

 

Role of Oscillatory Differential Equations 
 Oscillatory functional differential equations can be used as mathematical tools for simulation of 

process and phenomena observed in control theory, most especially the second order forced functional 

differential equations which can govern the simulation of process in control theory. 

 In industrial quality control the idea of testing have always been adapted and extended in various ways 

to serve basic practical needs. The control chart for the sample mean of testing made, shows the lower control 

limit (LCL), the central control limit (CCL) and the upper control limit (UCL) (Kreyszig1999). This clearly 

obeys the forced oscillatory equations. The two control limits lower control limit and the upper control limit 

corresponds to the greatest lower bound, the least upper bound  of the oscillation, as soon as the sample mean 

falls outside the range between the two control limit we reject the hypothesis and asserts that the production is 

out of control. 

 

Definition of Basic Terms 
 Oscillation; oscillation is any effect the varies periodically back and forth between two values [6] 

Functional differential equations: a functional differential equation is an equation in which the derivatives 

)()( ty n
 of an unknown function y  has a value at t. [1] 

 Damped oscillation is the linear motion of a particle subject both to an elastic restoring force 

proportional to its displacement and to a frictional force in the direction opposite to its motion and proportional 

to its speed or any oscillation in which the amplitude of the oscillation quantity decreases with time. 

Sinusoidal function: The real or complex function sin (u) or any function with analogous continuous periodic 

behaviors. 
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 Many investigations and studies have been carried out by authors on theory of oscillations, but the 

problem of maintaining oscillation under the effect of a forcing term has always been left out. The oscillations 

of all solutions of unforced functional differential equations 

0''' 0  xcxx                                                                             (1.2) 

Whose solution is of the form 

)cos()( 1    taetx t
 

Where 0,0,0),,[ 0  xtCa   

 Is not generally maintained if one considers the forced equations by adding a forcing term to the right 

hand side of equation (1.2). 

[2] Studied oscillation theory for functional differential equation 

0,0))(()()(' tttxtqtx                                                              (1.3) 

Where ,)(),,[),0,),,([ 00 tttCtCq     

And obtained the following results; 

That every solution of equation (1.3) oscillates if 
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[8] Investigated oscillations for first order linear differential equation 

0,0]0)(()[()(' tttxtqtx                                                             (1.4) 

Where ),,1(,)(),,[ 0  tttCq   

 And obtained the oscillatory behavior, that if   be continuously differentiable, further, suppose that 

there exists a continuous differentiable function  such that 0)( t  and ,)(lim  tt   
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Then every solution of the linear equation (1.4) oscillates. 
[1] Studied equation of the type 

0)()()('  txtqtx a
                                                       (1.5) 

0)'(()()("  txgtqtx                                                       (1.6) 

Where  :),,0(,)],,0(),,([ gtCq   such that 0)( xxg for 0x , g is nondecreasing. 

 Necessary and sufficient conditions in terms of coefficient were obtained for all solutions of the 
prescribed equations which were oscillatory. 

[5] Studied the oscillation of the equation 

0

)( ,0)()()( tttxtptx n                                                         (1.7) 

kk tttttt  ...0,0, 210
 
Such that kt  as ,k  and established oscillatory results 

based on combinations of the following conditions: 
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(ii) There exist a positive integer 0k  such that for 0kk    and for any natural number 

).1,...2,1,0(,}1,...3,1{  iiCann i

k

i

k  

While the above investigations concerns unforced functional differential equations, we are motivated to 

investigate the problems of maintaining oscillations under the effect of a forcing term. 

 

II. Forced Oscillations of Linear Equations 

 Forced motions are obtained, if an external force acts on the body, to gate this one simply add a new 

force to those forces (equation (1.2)) this gives the nonhomogeneous differential equation 

0

2

0

2

0'" Xxcxx                                                                  (2.1) 
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 A corresponding solution is a response of the system to the driving force of a particular interest, is the 

periodic force which may be considered as sinusoidal force say 

)cos()( 0 txtx                                                                           (2.2). 

 If c=0 (2.1) is undamped and the solution )(txp  becomes larger and larger this means that a system 

with very small damping undergoes large vibrations that can destroy the system. 

When    is close to 0  a type of oscillation that grows large and larger until it riches the upper limit and then 

begins to come back to the origin, is obtained. This is what happens in forced undamped oscillations when the 

difference of the input and the natural frequencies are so small. 

 

Damped Forced Oscillation 

 In free oscillation energy conserving physical system which exhibits harmonic oscillation about a 

stable equilibrium state is encountered, the main feature of such oscillation is that once excited it never dies 
away. [7] 

However, majority of the oscillation system that one encounters in every day life suffer some sorts of 

irreversible energy loss whilst they are in motion, which is due for instance to frictional or viscose heat 

generations. We would therefore expect oscillations excited in such a system eventually be damped away. 

If there is damping then c>0, the general solution hx  of the homogeneous equation (1.2) is 

).coscos()( ** tBtAetx t

h   
  this solution approaches zero as t goes to infinity. Now the general 

solution of the nonhomogeneous equation (2.1) is .hp xxx    it approaches the steady state solution which 

leads to a harmonic oscillation whose frequency is that of the input, because no physical system is completely 

undamped. 

 

III. Driven Oscillation 
 When a damped mechanical oscillator is set into motion the oscillation dies away due to frictional 
energy losses, infarct the only way of maintaining the amplitude of a damped oscillator equation is to 

continuously feed energy into the system in such a manner as to off set the frictional losses. A steady (constant 

amplitude) oscillation of this type is called Driven oscillation. We would generally expect the periodically 

driven oscillator to eventually settle down to a steady pattern of oscillation, with the same frequency in which 

the frictional energy loss per cycle is exactly matched by the work done per cycle. The equation of motion of the 

system is  

Xxcxx 0

2

0'"                                                                    (3.1) 

Where ,0c is a damping constant and 00   the damped oscillation frequency. The time evolution 

equation of the system takes the form 

)cos('" 0

2

0

2

0 tXxcxx                                                          (3.2) 

We now search for the solution of (3.2) in the form 

)cos()( 0   txtx                                                                  (3.3) 

 Here 00 x  is the amplitude of the driven oscillation while   is the phase lag of the oscillation. 

Differentiating (3.3) twice we have 

)sin(' 0   txx                                                                    (3.4) 

)cos(" 0

2   txx                                                                   (3.5) 

Equation (3.5) becomes 

)cos()sin()cos()( 0

2

000

22

0 tXtxctx                     (3.6) 

    )cos(]sincos)([ 0

2

00

22

00 tXcxx   

0)sin(]cossin)([ 22

00  tcx                                              (3.7) 

For equation (3.7) to be satisfied the coefficients of )cos( t   and )sin( t  most separately equate to zero, 

0cossin)(

0sincos)(

22
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
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
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c

Xcxx
                                          (3.8) 

If we combine (3.7) and (3.8) we gate 
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Because (3.8) gives 
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0
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2/122222
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2/122222

0 ])[(
sin






c

c


                                                           (3.13) 

Investigating the dependence of the amplitude 0x  and the phase lag     of the driven oscillation on the driving 

frequency ,  

0

0

X

x
 and   as a function of    for various different values of  Q

c
/1

0




 , this will give us 

 quality factor Q. it can be observed that as the amount of damping in the system is decreased the 

amplitude of the response riches its peak at the natural frequency of the oscillation of the system, so a weakly 

damped oscillator can be driven to large amplitude by the application of a relatively small amplitude external 
driving force which oscillates at a frequency close to the resonant frequency. The response of the oscillator is in 

phase (i.e. 0 ) with the external drive for driving frequencies well bellow the resonant frequency, is in phase 

quadrature (i.e.
2


  ) at the resonant frequency, and is in anti-phase (i.e.   ) for frequency well above 

the resonant frequency. 

 When the driving frequency matches the resonant frequency the ratio of the amplitude of the driven 
oscillation is the quality factor Q, which can be regarded as the resonant amplification factor. 

 

Response of Transient oscillator 

If we consider the time evolution equation of damped oscillation 

)cos('" 0

2

0

2

0 tXxcxx                                                          (3.14) 

The steady state solution to this equation is of the form 

)cos()( 0   txtxp                                                                 (3.15) 

Where 
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 The general solution of (3.14) should contain two arbitrary constants. However (3.15) contains no 

arbitrary constants, if we add any solution of (1) to equation (3.15) then the result will still be a solution to 

equation (3.14). The solution to equation (3.14) can be written as 

)sin()cos()( 1

2/

1

2/ tBetAetx ctct

h                                               (3.18) 

Where ,)4/( 2/122

01 c   A and B are arbitrary constants. So that a more general solution to (3.14) is 

)()()( txtxtx hp                                                                          (3.19) 

)sin()cos()cos()( 1

2/

1

2/

0 tBetAetxtx ctct                           (3.20) 

 The constants A and B are determined by the initial conditions, the general solution to (3.14) consist of 

two parts, first the solution (3.15) which oscillates at the driving frequency   with a constant amplitude and 
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which is independent of the initial conditions, second the solution (3.18) which oscillates at natural frequency 

1  with an amplitude which decays exponentially in time, and which depends on initial conditions. 

 The former is termed the time asymptotic so0lution since if we wait long enough then it becomes 

dominant; the later is called the transient solution, since if we wait long enough it decays away. 

Suppose that the system is in its equilibrium that is )0(')0( xx   it follows from (3.20) that 

0cos)0( 0  Axx                                                                    (3.21) 

02/sin)0(' 10   BAcxx                                                    (3.22) 

These equations can be solved to give 

cos0xA 
                                                                                 (3.23)
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 ]                                                          (3.24) 

For driving frequency close to the resonant frequency we can write 
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The solution (3.20) combined with (3.23) to (3.27) reduces to 
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If the driving frequency is equal to the resonant frequency that is  

,0    in this case equation (3.28) reduces to  

)sin()1()( 2/

0 teQXtx ct                                                            (3.29) 

.0

c
Q


  Thus the driving response oscillates at the resonant frequency 0  since both the time asymptotic and 

the transient solution oscillates at this frequency. 

However the amplitude of the oscillation grows monotonically as 

)1()( 2/

0

cteQXta   

 And so takes a time of order c-1 to attain its final value ,0QX   which is larger than the driving 

amplitude by resonant amplification factor. In absence of damping force that is when c=0 equation (3.28) yields 

]2/)sin[(]2/)sin[()( 00
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0
0 ttXtx 
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
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
                         (3.30) 

Using the trigonometric identity 

]2/)sin[(]2/)sin[(2coscos bababa   

The driven response oscillates relatively rapidly at the sum frequency 2/)( 0    with amplitude 

]/)sin[()]/([)( 0000 tXta    

This modulates relatively slowly at the difference frequency .2/)( 0    
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 (Assuming that   is close to 0 ), 

0

0

2




T     and the amplitude modulations are called beats, and 

are produced whenever two sinusoidal oscillations of similar amplitude and slightly different frequency are 

superposed. In this case the oscillations are the time asymptotic solutions, which oscillates at the driving 

frequency ,  and the transient solution which oscillates at the resonant frequency ,0   the beats modulates at 

the difference frequency 2/)( 0      in the limit ,0  equation (3.30) yields 

)sin(
2

)( 00
0 tt

X
tx                                                                      (3.31) 

 Since xx sin  when 1x  thus the resonant response of a driven undamped oscillator is an 

oscillation at the resonant frequency whose amplitude tXta 00 )2/()(   increases linearly in time. The non-

resonant response of a driven damped oscillator obtained from equation (3.28) where 

0

0

2




T   shows that the 

driven response grows, but eventually settles down to a steady pattern of oscillation. 

 

IV. Conclusion 
 In conclusion it is evident that the oscillation of the unforced equation is maintained under the effect of 

certain forcing terms. 

 If a periodic (sinusoidal) forcing term is added at angular frequency ,  the same solution regimes are 

again obtained. The resulting motion is still periodic (after an initial transient response corresponding to the 

solution of the unforced case has died out), but it has an amplitude different from the forcing amplitude. 

The only way of maintaining the amplitude of a damped oscillator in a physical system is to continuously feed 

energy into the system in such a manner as to offset the frictional losses. 
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