On Fuzzy γ - Semi Open Sets and Fuzzy γ - Semi Closed Sets in Fuzzy Topological Spaces

R.Usha Parameswari¹, K.Bageerathi²,

^{1,2}Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

Abstract: The aim of this paper is to introduce the concept of fuzzy γ - semi open and fuzzy γ - semi closed sets of a fuzzy topological space. Some characterizations are discussed, examples are given and properties are established. Also, we define fuzzy γ - semi interior and fuzzy γ - semi closure operators. And we introduce fuzzy γ - t-set, γ -SO extremely disconnected space analyse the relations between them. **MSC 2010**: 54A40, 03E72.

Key words: Fuzzy γ - open, fuzzy γ - closed, fuzzy γ - semi open, fuzzy γ - semi closed, fuzzy γ - semi interior and fuzzy γ - semi closure, γ - t-set and fuzzy topology.

I. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by L.A.Zadeh [6] in his paper. Let X be a non empty set and I be the unit interval [0,1]. A Fuzzy set in X is a mapping from X in to I. In 1968, Chang [3] introduced the concept of fuzzy topological space which is a natural generalization of topological spaces. Our notation and terminology follow that of Chang. Azad introduced the notions of fuzzy semi open and fuzzy semi closed sets. And T.Noiri and O.R.Sayed[5] introduced the notion of γ -open sets and γ -closed sets. Swidi Oon[4] studied some of its properties.

Through this paper (X, τ) (or simply X), denote fuzzy topological spaces. For a fuzzy set A in a fuzzy topological space X, cl(A), int(A), A^C denote the closure, interior, complement of A respectively. By 0_x and l_x we mean the constant fuzzy sets taking on the values 0 and 1, respectively.

In this paper we introduce fuzzy γ -semi open sets and fuzzy γ -semi closed sets its properties are established in fuzzy topological spaces. The concepts that are needed in this paper are discussed in the second section. The concepts of fuzzy γ -semi open and fuzzy γ -semi closed sets in fuzzy topological spaces and studied their properties in the third and fourth section respectively. Using the fuzzy γ - semi open sets, we introduce the concept of fuzzy γ - SO extremely disconnected space. The section 5 and 6 are dealt with the concepts of fuzzy γ -semi interior and γ -semi closure operators. In the last section, we define fuzzy γ -t-sets and discuss the relations between this set and the sets defined previously.

II. Preliminaries

In this section, we give some basic notions and results that are used in the sequel.

Definition 2.1: A fuzzy set A of a fuzzy topological space X is called:

- 1) fuzzy semi open (semi closed) [2] if there exists a fuzzy open (closed) set U of x such that $U \le A \le cl U$ (int $U \le A \le U$).
- fuzzy strongly semi open (strongly semi closed) [4] if A ≤ int(cl(int A)) (A ≥ cl(int(cl A))).
- 3) fuzzy γ -open (fuzzy γ -closed) [5] if $A \le (int(cl A)) \lor cl(int(A))$ ($A \ge (cl(int(A))) \land (int(cl(A))))$.

Definition 2.2[7]: If λ is a fuzzy set of X and μ is a fuzzy set of Y, then

 $(\lambda \times \mu)(x, y) = \min \{ \lambda(x), \mu(y) \}, \text{ for each } X \times Y.$

Definition 2.3[2]: An fuzzy topological space (X, τ_1) is a product related to an fuzzy topological space (Y, τ_2) if for fuzzy sets A of X and B of Y whenever $C \stackrel{c}{\geq} A$ and $D \stackrel{c}{\geq} B$ implies $C^c \times 1 \lor 1 \times D \stackrel{c}{\geq} A \times B$, where $C \in \tau_1$ and $D \in \tau_2$, there exist $C_1 \in \tau_1$ and $D_1 \in \tau_2$ such that $C_1 \stackrel{c}{\sim} A$ or $D_1 \stackrel{c}{\sim} B$ and $C_1 \stackrel{c}{\sim} x 1 \lor 1 \times D_1 \stackrel{c}{=} C^c \times 1 \lor 1 \to 0 \stackrel{c}{=} C^c \to 0$

Lemma 2.4 [2]: Let X and Y be fuzzy topological spaces such that X is product related to Y. Then for fuzzy sets A of X and B of Y,

1) $cl(A \times B) = cl(A) \times cl(B)$

2) int $(A \times B) = int (A) \times int (B)$

Lemma 2.5[1]: For fuzzy sets λ , μ , υ and ω in a set S, one has

 $(\lambda \wedge \mu) \times (\upsilon \wedge \omega) = (\lambda \times \omega) \wedge (\mu \times \upsilon)$

Remark 2.6[5]:

1. Any union of fuzzy γ -open sets in a fuzzy topological space X is a fuzzy γ -open set.

2. Any intersection of fuzzy γ -closed sets is fuzzy γ -closed set.

3. Let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a collection of fuzzy γ -open sets in a fuzzy topological space X. Then $\overset{\vee}{}_{\alpha \in \Delta}A_{\alpha}$ is fuzzy γ -open.

Definition 2.7[5]: Let A be any fuzzy set in the fuzzy topological space X. Then we define γ -cl (A) = \land {B: B \ge A, B is fuzzy γ -closed} and γ -int (A) = \lor {B: B \le A, B is fuzzy γ -open in X}.

Properties 2.8[5]: Let A be any fuzzy set in the fuzzy topological space X. Then

a) γ -cl (A^c) = (γ -int (A))^c

b) γ -int (A^c) = (γ -cl(A))^c

Properties 2.9[5]: Let A and B be any two fuzzy sets in a fuzzy topological space X. Then

1) γ -int (0) = 0, γ -int (1) = 1. 2) γ -int (A) is fuzzy γ -open in X.

3) γ -int(γ -int (A)) = γ -int (A).

4) if $A \le B$ then γ -int (A) $\le \gamma$ -int (B).

5) γ -int (A \wedge B) = γ -int (A) $\wedge \gamma$ -int (B).

6) γ -int (A \lor B) $\ge \gamma$ -int (A) $\lor \gamma$ -int (B).

Properties 2.10[5]: Let A and B be any two fuzzy sets in a fuzzy topological space X. Then

1) γ -cl(0) = 0, γ -cl(1) = 1. 2) γ -cl(A) is fuzzy γ -closed in X. 3) γ -cl(γ -cl(A)) = γ -cl(A). 4) if A \leq B then γ -cl(A) $\leq \gamma$ -cl(B). 5) γ -cl(A \vee B) = γ -cl(A) $\vee \gamma$ -cl(B). 6) γ -cl (A \wedge B) $\leq \gamma$ -cl (A) $\wedge \gamma$ -cl(B).

III. Fuzzy γ-Semi Open Sets

In this section we introduce the concept of fuzzy γ -semi open sets in a fuzzy topological space.

Definition 3.1: Let A be a fuzzy subset of a fuzzy topological space (X,τ) . Then A is called fuzzy γ -semi open set of X if there exist a fuzzy γ -open set γ -O such that γ -O $\leq A \leq cl$ (γ -O).

Theorem 3.2: Let (X,τ) be a fuzzy topological space. Let A and B be any two fuzzy subsets of X and γ -int $(A) \le B \le \gamma$ -cl (A). If A is a fuzzy γ -semi open set then so is B.

Proof:

Let A and B be a fuzzy subsets of X and γ -int (A) $\leq B \leq \gamma$ -cl(A). Let A be fuzzy γ -semi open set. By Definition 3.1, there exists a fuzzy γ -open set γ -O such that γ -O $\leq A \leq$ cl (γ -O), it follows that γ -O $\leq \gamma$ -int (A) $\leq A \leq \gamma$ -cl(A) \leq cl (γ -O) and hence γ -O $\leq B \leq$ cl (γ -O). Thus B is a fuzzy γ -semi open set.

Theorem 3.3: Let (X, τ) be a fuzzy topological space. Then a fuzzy subset A of a fuzzy topological space (X, τ) is fuzzy γ -semi open if and only if A \leq cl $(\gamma$ -int(A)).

Proof:

Let $A \leq cl(\gamma - int(A))$. Then for $\gamma - O = \gamma - int(A)$, we have $\gamma - int(A) \leq A$. Therefore $\gamma - int(A) \leq A \leq cl(\gamma - int(A))$. Conversely, let A be a fuzzy γ -semi open. By Definition 3.1, there exists a fuzzy γ -open set γ -O such that γ -O $\leq A \leq cl(\gamma$ -O). But γ -O $\leq \gamma$ -int(A). Thus $cl(\gamma - O) \leq cl(\gamma - int(A))$. Hence $A \leq cl(\gamma - O) \leq cl(\gamma - int(A))$.

Remarks 3.4: It is obvious that every fuzzy γ -open is fuzzy γ -semi open and every fuzzy open set is fuzzy γ -semi open but the separate converses may not be true as shown by the following example.

Example 3.5: Let X ={a, b, c} and $\tau = \{0, 1, \{a_{.2}, b_{.3}, c_{.5}\}, \{a_{.4}, b_{.7}, c_{.3}\}, \{a_{.2}, b_{.3}, c_{.3}\}, \{a_{.4}, b_{.7}, c_{.5}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.8}, b_{.7}, c_{.5}\}, \{a_{.6}, b_{.3}, c_{.7}\}, \{a_{.8}, b_{.7}, c_{.7}\}, \{a_{.6}, b_{.3}, c_{.5}\}\}$. Let A = {a.4, b.6, c.6}. Then cl(int(A))= {a.6, b.3, c.5} and int(cl(A)) = {a.4, b.7, c.5}. By Definition 2.1(3), A is not fuzzy γ -open. Now let γ -int(A) = {a.2, b.6, c.6}. Then A \leq cl (γ -int(A)) = {a.8, b.7, c.7}. Thus A is fuzzy γ -semi open. The next example shows that every fuzzy γ -semi open set need not be fuzzy open.

Example 3.6:

Let $X = \{a, b, c\}$ and $\tau = \{0, 1, \{a_{.1}, b_{.2}, c_{.3}\}, \{a_{.5}, b_{.1}, c_{.4}\}, \{a_{.1}, b_{.1}, c_{.3}\}, \{a_{.5}, b_{.2}, c_{.4}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^c = \{0, 1, \{a_{.9}, b_{.8}, c_{.7}\}, \{a_{.5}, b_{.1}, c_{.6}\}, \{a_{.9}, a_{.9}, a_$

b.9, c.7}, $\{a.5, b.8, c.6\}$. Let $A = \{a.5, b.3, c.5\}$. Then γ -int(A) = $\{a.5, b.3, c.4\}$ and $cl(\gamma$ -int(A)) = $\{a.5, b.8, c.6\}$. It shows that $A \le cl(\gamma$ -int (A)). By using Theorem 3.3, A is fuzzy γ -semi open. But A is not a fuzzy open set.

It is clear that every fuzzy semi open is fuzzy γ -semi open but the converse need not be true as shown by the following example.

Example 3.7: Let $X = \{a, b\}$ and $\tau = \{0, 1, \{a_{.2}, b_{.3}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.8}, b_{.7}\}\}$. Let $A = \{a_{.1}, b_{.2}\}$. Then γ -int $(A) = \{a_{.1}, b_{.1}\}$ and $cl(\gamma$ -int $(A)) = \{a_{.8}, b_{.7}\}$. It shows that $A \le cl(\gamma$ -int (A)). By using Theorem 3.3, A is fuzzy γ -semi open. Now $cl(int(A)) = \{0\}$. That shows $A \le cl(int(A))$. Hence A is not a fuzzy semi open set.

Proposition 3.8: Let (X, τ) be a fuzzy topological space. Then the union of any two fuzzy γ -semi open sets is a fuzzy γ -semi open set.

Proof:

Let A_1 and A_2 be the two fuzzy γ -semi open sets. By Theorem 3.3, $A_1 \leq cl (\gamma - int (A_1))$ and $A_2 \leq cl (\gamma - int (A_2))$. int (A_2) . Therefore $A_1 \lor A_2 \leq cl(\gamma - int (A_1)) \lor cl(\gamma - int(A_2)) = cl(\gamma - int (A_1)) \lor \gamma - int(A_2)$. By using Properties 2.9(6), $A_1 \lor A_2 \leq cl(\gamma - int (A_1 \lor A_2))$. Hence $A_1 \lor A_2$ is fuzzy γ -semi open.

The following example shows that the intersection of any two fuzzy γ -semi open sets need not be fuzzy γ -semi open set.

Example 3.9: Let $X = \{a, b\}$ and $\tau = \{0, 1, \{a_{.2}, b_{.4}\}, \{a_{.3}, b_{.5}\}\}$. Then (X, τ) be a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^c = \{0, 1, \{a_{.8}, b_{.6}\}, \{a_{.7}, b_{.5}\}\}$. Let $A = \{a_{.8}, b_{.9}\}$ and γ -int $(A) = \{a_{.8}, b_{.8}\}$. Then we get $cl(\gamma-int(A)) = \{1\}$. Thus by Theorem 3.3, A is fuzzy γ -semi open.

Let $B = \{a.9, b.7\}$. Then γ -int $(B) = \{a.9, b.5\}$ and we get $cl(\gamma-int(B)) = \{1\}$. Thus by Theorem 3.3, B is fuzzy γ -semi open. Now $A \land B = \{a.8, b.7\}$ and γ -int $(A \land B) = \{a.6, b.5\}$. Then $cl(\gamma-int (A \land B)) = \{a.7, b.5\}$. Thus $A \land B$ is not less than or equal to $cl(\gamma-int (A \land B))$. Therefore $A \land B$ is not fuzzy γ -semi open.

Theorem 3.10: Let (X, τ) be a fuzzy topological space and let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a collection of fuzzy γ -semi open sets in a fuzzy topological space X. Then ${\stackrel{\vee}{}}_{\alpha \in \Delta} A_{\alpha}$ is fuzzy γ -semi open.

Proof:

Let Δ be a collection of fuzzy γ -semi open sets of a fuzzy topological space (X, τ) . Then by using Theorem 3.3, for each $\alpha \in \Delta$, $A_{\alpha} \leq cl(\gamma \text{-int}(A_{\alpha}))$. Thus $\bigvee_{\alpha \in \Delta}^{\vee} A_{\alpha} \leq \bigvee_{\alpha \in \Delta}^{\vee} cl(\gamma \text{-int}(A_{\alpha}))$. Since $\lor cl(A_{\alpha}) \leq cl(\lor A_{\alpha})$, $\bigvee_{\alpha \in \Delta}^{\vee} A_{\alpha} \leq cl(\bigvee_{\alpha \in \Delta}^{\vee} (\gamma \text{-int} (A_{\alpha})))$. By using Remark 2.6(3), $\bigvee_{\alpha \in \Delta}^{\vee} A_{\alpha} \leq cl(\gamma \text{-int} (\bigvee_{\alpha \in \Delta}^{\vee} A_{\alpha}))$. Thus the arbitrary union of fuzzy γ -semi open sets is fuzzy γ -semi open.

Theorem 3.11: Let (X, τ) and (Y, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of fuzzy γ -open set A_1 of X and a fuzzy γ -open set A_2 of Y is fuzzy γ -open set of the fuzzy product space $X \times Y$.

Proof:

Let A_1 be a fuzzy γ -open subset of X and A_2 be a fuzzy γ -open subset of Y. Then by Definition 2.1(3), we have $A_1 \leq int(cl(A_1)) \lor cl(int(A_1))$ and

 $A_2 \leq int(cl (A_2)) \lor cl(int(A_2)). Now A_1 \times A_2 \leq (int(cl (A_1)) \lor cl(int(A_1))) \times (int(cl (A_2)) \lor cl(int(A_2))). By using Definition 2.2,$

 $A_1 \times A_2 \le \min\{ (int(cl (A_1)) \lor cl(int(A_1))), (int(cl (A_2)) \lor cl(int(A_2))) \}$

- $= (int(cl (A_1)) \lor cl(int(A_1))) \land (int(cl (A_2)) \lor cl(int(A_2)))$
- $=(int(cl\ (A_1)) \wedge int(cl\ (A_2)) \vee (cl(int(A_1)) \wedge cl(int(A_2)))$
- $= (int(cl (A_1 \times A_2))) \vee (cl(int(A_1 \times A_2)))$

Therefore $A_1 \times A_2$ is fuzzy γ -open in the fuzzy product space $X \times Y$.

Theorem 3.12: Let (X, τ) and (Y, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of a fuzzy γ -semi open set A_1 of X and a fuzzy γ -semi open set A_2 of Y is fuzzy γ -semi open set of the fuzzy product space $X \times Y$.

Proof:

Let A_1 be a fuzzy γ -semi open subset of X and A_2 be a fuzzy γ -semi open subset of Y. Then by using Theorem 3.3, we have $A_1 \leq cl(\gamma-int(A_1))$ and $A_2 \leq cl(\gamma-int(A_2))$. This implies that, $A_1 \times A_2 \leq cl(\gamma-int(A_1)) \times cl(\gamma-int(A_2))$. By Lemma 2.4(1), $A_1 \times A_2 \leq cl(\gamma-int(A_1)) \times (\gamma-int(A_2))$.

By Theorem 3.11, $A_1 \times A_2 \le cl$ (γ -int ($A_1 \times A_2$)). Therefore $A_1 \times A_2$ is fuzzy γ -semi open set in the fuzzy product space $X \times Y$.

IV. Fuzzy γ – semi closed sets

In this section we introduce the concept of fuzzy γ -semi closed sets in a fuzzy topological space.

Definition 4.1: Let A be a fuzzy subset of a fuzzy topological space (X, τ) . Then A is called fuzzy γ -semi closed set of X if there exist a fuzzy γ -closed set γ -c such that int $(\gamma-c) \le A \le \gamma-c$.

Theorem 4.2 : Let A and B be any two fuzzy subset of a fuzzy topological space (X, τ) and γ -int $(A) \le B \le \gamma$ -cl(A). If A is a fuzzy γ -semi closed set then so is B.

Proof:

Let A be a fuzzy subset of X and γ -int (A) $\leq B \leq \gamma$ -cl(A). If A is a fuzzy γ -semi closed set, then by Definition 4.1, there exists a fuzzy γ -closed set γ -c such that $int(\gamma-c) \leq A \leq \gamma$ -c. It follows that $int(\gamma-c) \leq \gamma$ -int (A) $\leq A \leq \gamma$ -cl (A) $\leq \gamma$ -c and hence $int(\gamma-c) \leq B \leq \gamma$ -c. Thus B is fuzzy γ -semi closed.

Theorem 4.3: A fuzzy subset A of a fuzzy topological space (X, τ) is fuzzy γ -semi closed if and only if $A \ge int (\gamma - cl(A))$.

Proof:

Let $A \ge int (\gamma - cl(A))$. Then for $\gamma - c = \gamma - cl(A)$, we have $A \le \gamma - cl(A)$. Therefore int $(\gamma - cl(A)) \le A \le \gamma - cl(A)$. Conversely let A be fuzzy γ -semi closed. Then by Definition 4.1, there exists a fuzzy γ -closed set γ -c such that $int(\gamma - c) \le A \le \gamma - c$. But $\gamma - cl(A) \le \gamma - c$ and int $(\gamma - cl(A)) \le int (\gamma - cl(A)) \le int (\gamma - cl(A)) \le int (\gamma - cl(A))$.

Proposition 4.4 : Let (X, τ) be a fuzzy topological space and A be a fuzzy subset of X. Then A is fuzzy γ -semi closed if and only if A^c is fuzzy γ -semi open.

Proof :

Let A be a fuzzy γ -semi closed subset of X. Then by Theorem 4.3, $A \ge int (\gamma-cl(A))$. Taking complement on both sides, we get $A^c \le (int (\gamma-cl(A)))^c = cl(\gamma-cl(A))^c$. By using Properties 2.8(b), $A^c \le cl(\gamma-int (A^c))$. By Theorem 3.3, we have A^c is fuzzy γ -semi open.

Conversely let A^c is fuzzy γ -semi open. By Theorem 3.3, $A^c \leq cl (\gamma - int(A^c))$. Taking complement on both sides we get, $A \geq (cl(\gamma - int(A^c))^c = int (\gamma - int(A^c))^c$. By using Properties 2.8(a), $A \geq int (\gamma - cl(A))$. By Theorem 4.3, we have A is fuzzy γ -semi closed.

Remark 4.5: It is obvious that every fuzzy γ -closed set is fuzzy γ -semi closed and every fuzzy closed set is fuzzy γ -semi closed but the separate converses may not be true as shown by the following example.

Example 4.6: Let $X = \{a, b, c\}$ and $\tau = \{0, 1, \{a_{.1}, b_{.7}, c_{.5}\}, \{a_{.2}, b_{.1}, c_{.2}\}, \{a_{.1}, b_{.1}, c_{.2}\}, \{a_{.2}, b_{.7}, c_{.5}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.9}, b_{.3}, c_{.5}\}, \{a_{.8}, b_{.9}, c_{.8}\}, \{a_{.9}, b_{.9}, c_{.8}\}, \{a_{.8}, b_{.3}, c_{.5}\}\}$. Let $A = \{a_{.4}, b_{.5}, c_{.3}\}$ then $cl(int(A)) = \{a_{.8}, b_{.3}, c_{.5}\}$ and $int(cl(A)) = \{a_{.2}, b_{.7}, c_{.5}\}$. Then $int(cl(A)) \land cl(int(A)) = \{a_{.2}, b_{.3}, c_{.5}\}$. By Definition 2.1(3), A is not fuzzy γ -closed. Now let γ -cl(A) = $\{a_{.5}, b_{.5}, c_{.5}\}$. Then $A \ge int(\gamma$ -cl(A)) = $\{a_{.2}, b_{.1}, c_{.2}\}$. Thus A is fuzzy γ -semi closed. The next example shows that every fuzzy γ -semi closed need not be fuzzy closed.

Example 4.7: Let X = {a, b, c} and $\tau = \{0, 1, \{a_{.1}, b_{.7}, c_{.5}\}, \{a_{.2}, b_{.1}, c_{.2}\}, \{a_{.1}, b_{.1}, c_{.2}\}, \{a_{.2}, b_{.7}, c_{.5}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.9}, b_{.3}, c_{.5}\}, \{a_{.8}, b_{.9}, c_{.8}\}, \{a_{.9}, b_{.9}, c_{.8}\}, \{a_{.8}, b_{.3}, c_{.5}\}$. Let A = {a.4, b.5, c.3}. Then γ -cl(A))= {a.5, b.5, c.5} and int(γ -cl(A)) = {a.2, b.1, c.2}. That shows A \geq int (γ -cl(A)), it follows that A is fuzzy γ -semi closed. But A is not a fuzzy closed set.

It follows that every fuzzy semi closed set is fuzzy γ -semi closed but the converse may not be true as shown by the following example.

Example 4.8: Let $X = \{a, b\}$ and $\tau = \{0, 1, \{a_{.8}, b_{.7}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.2}, b_{.3}\}\}$. Let $A = \{a_{.4}, b_{.5}\}$. Then γ -cl $(A) = \{a_{.5}, b_{.5}\}$ and int $(\gamma$ -cl $(A)) = \{0\}$. It shows that $A \ge int (\gamma$ -cl(A)). By using Theorem 4.3, A is fuzzy γ -semi closed.Now int $(cl(A)) = \{1\}$. That shows $A \ge int (cl(A))$. Hence A is not a fuzzy semi closed set.

Theorem 4.9: Let (X, τ) be a fuzzy topological space. Then the intersection of two fuzzy γ -semi closed sets is fuzzy γ -semi closed set in the fuzzy topological space (X, τ) .

Proof:

Let A_1 and A_2 be two fuzzy γ -semi closed sets. By Theorem 4.3, we have $A_1 \ge int(\gamma - cl(A_1))$ and $A_2 \ge int(\gamma - cl(A_2))$. Therefore $A_1 \land A_2 \ge int(\gamma - cl(A_1)) \land int ((\gamma - cl(A_2)) = int(\gamma - cl(A_1) \land (\gamma - cl(A_2))$. By using Properties 2.10(6), $A_1 \land A_2 \ge int(\gamma - cl(A_1 \land A_2))$. Hence $A_1 \land A_2$ is fuzzy γ -semi closed.

The union of two fuzzy γ -semi closed sets is need not be fuzzy γ -semi closed set in the fuzzy topological space X as shown by the following example.

Example 4.10: Let $X = \{a, b, c\}$ and $\tau = \{0, 1, \{a.5, b.2, c.7\}, \{a.7, b.8, c.3\}, \{a.5, b.2, c.3\}, \{a.7, b.8, c.7\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^c = \{0, 1, \{a.5, b.8, c.7\}\}$.

 c_{3} , { a_{3} , b_{2} , c_{7} }, { a_{5} , b_{8} , c_{7} }, { a_{3} , b_{2} , c_{3} }. Let A = { a_{6} , b_{7} , c_{6} } and γ -cl(A) = {a.₆, b.₈, c.₅}. Then we get int(γ -cl(A))= {a.5, b.2, c.3}. Thus by Theorem 4.3, A is fuzzy γ -semi closed. Let B = {a.5, b.8, c.5} and γ $cl(B) = \{a_{.5}, b_{.8}, c_{.6}\}$. Then we get $int(\gamma-cl(B)) = \{a_{.5}, b_{.2}, c_{.3}\}$. Thus by Theorem 4.3, B is fuzzy γ -semi closed. Now $A \lor B = \{a_{.6}, b_{.8}, c_{.6}\}$ and γ -cl $(A \lor B) = \{a_{.6}, b_{.8}, c_{.8}\}$. Then int $(\gamma$ -cl $(A \lor B)) =$ $\{a_{.5}, b_{.2}, c_{.7}\}$. Thus A \vee B is not greater than or equal to int(γ -cl (A \vee B)). Therefore A \vee B is not fuzzy γ -semi closed.

Theorem 4.11: Let (X, τ) be a fuzzy topological space and let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of fuzzy γ -semi closed sets in a fuzzy topological space X. Then $\stackrel{\wedge}{\alpha \in \Lambda} A_{\alpha}$ is fuzzy γ -semi closed for each $\alpha \in \Delta$.

Proof:

Let Δ be a collection of fuzzy γ -semi closed sets of a fuzzy topological space (X, τ). Then by Theorem 4.3, for each $\alpha \in \Delta$, $A_{\alpha} \ge int (\gamma - cl(A_{\alpha}))$. Then $\stackrel{\wedge}{}_{\alpha \in \Delta} A_{\alpha} \ge \stackrel{\wedge}{}_{\alpha \in \Delta} (int(\gamma - cl(A_{\alpha}))) \ge int \stackrel{\wedge}{}_{\alpha \in \Delta} (\gamma - cl(A_{\alpha}))$. By using Properties 2.6, $\stackrel{\wedge}{\alpha \in \Lambda} A_{\alpha} \ge int(\gamma - cl(\stackrel{\wedge}{\alpha \in \Lambda} (A_{\alpha})))$. Thus arbitrary intersection of fuzzy γ -semi closed set is fuzzy γ -semi closed.

Theorem 4.12: Let (X, τ) and (Y, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of fuzzy γ -closed set A_1 of X and a fuzzy γ -closed set A_2 of Y is fuzzy γ -closed set of the fuzzy product space $X \times Y$.

Proof:

Let A_1 be a fuzzy γ -closed subset of X and A_2 be a fuzzy γ -closed subset of Y. Then by Definition 2.1, we have $A_1 \ge int(cl(A_1)) \land cl(int(A_1))$ and $A_2 \ge int(cl(A_2)) \land cl(int(A_2))$. Now $A_1 \times A_2 \ge (int(cl(A_1)) \land a_1) \land a_2 \ge a_1 \land a_2 \ge a_2 \land a$ $cl(int(A_1))) \times (int(cl(A_2))) \land cl(int(A_2)))$. By using Lemma 2.5,

 $A_1 \times A_2 \ge$ (int (cl ($A_1 \times A_2$)) \land cl(int ($A_1 \times A_2$))). Therefore $A_1 \times A_2$ is fuzzy γ -closed in the fuzzy product space $X \times Y$.

Theorem 4.13: Let (X, τ) and (Y, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of fuzzy γ -semi closed set A_1 of X and a fuzzy γ -semi closed set A_2 of Y is fuzzy γ semi closed set of the fuzzy product space $X \times Y$.

Proof:

Let A_1 be a fuzzy γ -semi closed subset of X and A_2 be a fuzzy γ -semi closed subset of Y. Then by Theorem 4.3, we have $A_1 \ge int(\gamma - cl(A_1))$ and $A_2 \ge int(\gamma - cl(A_2))$. Now $A_1 \times A_2 \ge int(\gamma - cl(A_1)) \times int(\gamma - cl(A_2))$. By using Lemma 2.4(2), $A_1 \times A_2 \ge int(\gamma - cl (A_1) \times \gamma - cl (A_2))$. By using the Theorem 4.12, we get $A_1 \times A_2 \ge int(\gamma - cl (A_1) \times \gamma - cl (A_2))$. int(γ -cl(A1 × A2)).

Therefore $A_1 \times A_2$ is fuzzy γ -semi closed in the fuzzy product space $X \times Y$.

Fuzzy γ-semi interior V.

In this section we introduce the concept of fuzzy γ -semi interior and

their properties in a fuzzy topological space.

Definition 5.1: Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset A of X, the fuzzy γ -semi interior of A (briefly γ -sint (A)) is the union of all fuzzy γ -semi open sets of X contained in A. That is, γ -sint (A) = \vee {B: $B \le A$, B is fuzzy γ -semi open in X}

Proposition 5.2: Let (X, τ) be a fuzzy topological space. Then for any fuzzy subsets A and B of a fuzzy topological X we have

- (i) γ -sint (A) \leq A
- (ii) A is fuzzy γ -semi open $\Leftrightarrow \gamma$ -sint(A) = A
- (iii) γ -sint(γ -sint (A)) = γ -sint (A)
- (iv) if $A \le B$ then γ -sint (A) $\le \gamma$ -sint (B)

Proof:

- (i) follows from Definition 5.1.
- (ii) Let A be fuzzy γ -semi open.
 - Then $A \le \gamma$ -sint (A). By using (i) we get $A = \gamma$ -sint (A).

Conversely assume that A = γ -sint (A). By using Definition 5.1, A is fuzzy γ -semi open. Thus (ii) is proved.

- (iii) By using (ii) we get γ -sint(γ -sint (A)) = γ -sint (A). This proves (iii).
- (iv) Since $A \le B$, by using (i) γ -sint (A) $\le A \le B$. That is γ -sint (A) $\le B$.

By (iii), γ -sint (γ -sint (A)) $\leq \gamma$ -sint(B). Thus γ -sint (A) $\leq \gamma$ -sint (B). This proves (iv).

Theorem 5.3: Let (X, τ) be a fuzzy topological space. Then for any fuzzy subset A and B of a fuzzy topological space, we have

 γ -sint (A \wedge B) = (γ -sint A) \wedge (γ -sint B) (i)

(ii) γ -sint (A \lor B) \ge (γ -sint A) \lor (γ -sint B)

Proof:

 $\begin{array}{ll} \text{Since } A \wedge B \leq A \text{ and } A \wedge B \leq B, \text{ by using Proposition 5.2(iv), we get} & \gamma \text{-sint} \\ (A \wedge B) \leq \gamma \text{-sint}(A) \text{ and } \gamma \text{-sint}(A \wedge B) \leq \gamma \text{-sint}(B). \text{ This implies that} & \gamma \text{-sint}(A \wedge B) \leq (\gamma \text{-}$

sint A) \land (γ -sint B) ------(1).

By using Proposition 5.2(i), we have γ -sint(A) \leq A and γ -sint(B) \leq B. This implies that γ -sint (A) $\land \gamma$ -sint(B) \leq A \land B. Now applying Proposition 5.2(iv),

we get γ -sint ((γ -sint (A) $\land \gamma$ -sint (B)) $\leq \gamma$ -sint (A \land B).

By (1), γ -sint(γ -sint (A)) $\land \gamma$ -sint (γ -sint (B)) $\leq \gamma$ -sint (A $\land B$). By Proposition 5.2(iii), γ -sint (A) $\land \gamma$ -sint (B) $\leq \gamma$ -sint (A $\land B$) ------(2). γ -sint (B). This implies(i).

Since $A \le A \lor B$ and $B \le A \lor B$, by using Proposition 5.2(iv), we have γ -sint (A) $\le \gamma$ -sint (A $\lor B$) and γ -sint (B) $\le \gamma$ -sint (A $\lor B$). This implies that γ -sint (A) $\lor \gamma$ -sint (B) $\le \gamma$ -sint (A $\lor B$). Hence (ii).

The following example shows that the equality need not be hold in Theorem 5.3(ii).

Example 5.4: Let $X = \{a, b, c\}$ and $\tau = \{0, 1, \{a._5, b._3, c._7\}, \{a._2, b._4, c._4\}, \{a._2, b._3, c._4\}, \{a._5, b._4, c._7\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^c = \{0, 1, \{a._5, b._7, c._3\}, \{a._8, b._6, c._6\}, \{a._8, b._7, c._6\}, \{a._5, b._6, c._3\}\}$. Consider $A = \{a._4, b._3, c._4\}$ and $B = \{a._3, b._7, c._4\}$. Then γ -sint $(A) = \{a._3, b._3, c._4\}$ and γ -sint $(B) = \{a._2, b._4, c._4\}$. That implies γ -sint $(A) \lor \gamma$ -sint $(B) = \{a._3, b._4, c._4\}$. Now $A \lor B = \{a._4, b._7, c._4\}$, it follows that γ -sint $(A \lor B) = \{a._4, b._5, c._4\}$. Then γ -sint $(A \lor B) \not\leq \gamma$ -sint $(A) \lor \gamma$ -sint (B).

VI. Fuzzy γ-semi closure

In this section we introduce the concept of fuzzy γ -semi closure in a fuzzy topological space. **Definition 6.1:** Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset A of X, the fuzzy γ -semi closure of A (briefly γ -scl (A)) is the intersection of all fuzzy γ -semi closed sets contained in A. That is, γ -scl (A) = \land { B; B \geq A. B is fuzzy γ -semi closed }.

Proposition 6.2: Let (X, τ) be a fuzzy topological space. Then for any fuzzy subsets A of X, we have i. $(\gamma - sint (A))^c = \gamma - scl (A^c)$ and

ii. $(\gamma - \operatorname{scl} (A))^c = \gamma - \operatorname{sint} (A^c)$

Proof:

By using Definition 5.1, γ -sint (A) = \lor {B: B ≤ A, B is fuzzy γ -semi open}. Taking complement on both sides, we get $[\gamma$ -sint (A)]^c = (sup{B : B ≤ A, B is fuzzy γ -semi open})^c = inf{B^c : B^c ≥ A^c, B^c is fuzzy γ -semi closed}. Replacing B^c by c, we get $[\gamma$ -sint (A)]^c = \land {c: c ≥ A^c, c is fuzzy γ -semi closed}. By Definition 6.1, $[\gamma$ -sint (A)]^c = γ -scl(A^c). This proves(i).

By using(i), $[\gamma$ -sint $(A^c)]^c = \gamma$ -scl $(A^c)^c = \gamma$ -scl (A). Taking complement on both sides, we set γ -sint $(A^c) = [\gamma$ -scl (A)]^c. Hence proved (ii).

Proposition 6.3: Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset A and B of a fuzzy topological space X, we have

(i) $A \leq \gamma$ -scl (A).

- (ii) A is fuzzy γ -semi closed $\Leftrightarrow \gamma$ -scl (A) = A.
- (iii) γ -scl (γ -scl (A)) = γ -scl (A).
- (iv) if $A \le B$ then γ -scl (A) $\le \gamma$ -scl (B).

Proof:

- (i) The proof of (i) follows from the Definition 6.1.
- (ii) Let A be fuzzy γ -semi closed subset in X. By using Proposition 4.4, A^c is fuzzy γ -semi open. By using Proposition 6.2(ii), γ -sint(A^c) = $A^c \Leftrightarrow [\gamma$ -scl (A)]^c = $A^c \Leftrightarrow \gamma$ -scl (A) = A. Thus proved (ii).
- (iii) By using (ii), γ -scl(γ -scl (A)) = γ -scl (A). This proves (iii).
- (iv) Suppose $A \le B$. Then $B^c \le A^c$. By using Proposition 5.2(iv), γ -sint $(B^c) \le \gamma$ -sint (A^c) . Taking complement on both sides, we get $[\gamma$ -sint $(B^c)]^c \ge [\gamma$ -sint $(A^c)]^c$. By proposition 6.2(ii), γ -scl $(B) \ge \gamma$ -scl(A). This proves (iv).

Proposition 6.4: Let A be a fuzzy set in a fuzzy topological space X. Then $int(A) \le sint(A) \le \gamma$ - $int(A) \le \gamma$ - $sint(A) \le A \le \gamma$ - $scl(A) \le \gamma$ - $cl(A) \le scl(A) \le cl(A)$.

Proof: It follows from the Definitions of corresponding operators.

Proposition 6.5: Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset A and B of a fuzzy topological space X, we have

- (i) γ -scl (A \lor B) = γ -scl (A) $\lor \gamma$ -scl (B) and
- (ii) γ -scl (A \wedge B) $\leq \gamma$ -scl (A) $\wedge \gamma$ -scl (B).

Proof:

Since γ -scl $(A \lor B) = \gamma$ -scl $[(A \lor B)^c]^c$, by using Proposition 6.2(i), we have

 γ -scl $(A \lor B) = [\gamma$ -sint $(A \lor B)^c]^c = [\gamma$ -sint $(A^c \land B^c)]^c$. Again using Proposition 5.3(i), we have γ -scl $(A \lor B) = [\gamma$ -sint $(A^c) \land \gamma$ -sint $(B^c)]^c = [\gamma$ -sint $(A^c)]^c \lor [\gamma$ -sint $(B^c))]^c$. By using Proposition 6.2(i), we have γ -scl $(A \lor B) = \gamma$ -scl $(A^c)^c \lor \gamma$ -scl $(B^c)^c = \gamma$ -scl $(A) \lor \gamma$ -scl (B). Thus proved (i).

Since $A \land B \leq A$ and $A \land B \leq B$, by using Proposition 6.3(iv), γ -scl $(A \land B) \leq \gamma$ -scl(A) and γ -scl $(A \land B) \leq \gamma$ -scl (B). This implies that γ -scl $(A \land B) \leq \gamma$ -scl (A) $\land \gamma$ -scl (B). This proves(ii).

The following example shows that γ -scl (A \wedge B) need not be equal to γ -scl(A) $\wedge \gamma$ -scl(B).

Example 6.6: Let $X = \{a, b, c\}$ and $\tau = \{0, 1, \{a_{.1}, b_{.7}, c_{.5}\}, \{a_{.2}, b_{.1}, c_{.2}\}, \{a_{.1}, b_{.1}, c_{.2}\}, \{a_{.2}, b_{.7}, c_{.5}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^{c} = \{0, 1, \{a_{.9}, b_{.3}, c_{.5}\}, \{a_{.8}, b_{.9}, c_{.8}\}, \{a_{.9}, b_{.9}, c_{.8}\}, \{a_{.8}, b_{.3}, c_{.5}\}\}$. Consider $A = \{a_{.4}, b_{.5}, c_{.3}\}$ and $B = \{a_{.9}, b_{.5}, c_{.5}\}$. Then γ -scl $(A) = \{a_{.5}, b_{.5}, c_{.5}\}$. Now $A \land B = \{a_{.4}, b_{.5}, c_{.2}\}$ and γ -scl $(A \land B) = \{a_{.4}, b_{.5}, c_{.3}\}$. Thus γ -scl $(A) \land \gamma$ -scl $(B) \neq \gamma$ -scl $(A \land B)$.

Theorem 6.7: Let (X, τ) be a fuzzy topological space. Then for a fuzzy subset A and B of X we have,

- (i) γ -scl (A) \geq A $\vee \gamma$ -scl (γ -sint (A)).
- (ii) γ -sint (A) \leq A $\wedge\gamma$ -sint (γ -scl (A)).
- (iii) int $(\gamma$ -scl (A)) \leq int (cl (A)).
- (iv) $\operatorname{int}(\gamma\operatorname{-scl}(A)) \ge \operatorname{int}(\gamma\operatorname{-scl}(\gamma\operatorname{-sint}(A))).$

Proof:

- (i) By Proposition 6.3(i), $A \le \gamma$ -scl (A) ------ (1). Again using Proposition 5.2(i), γ -sint (A) $\le A$. Then γ -scl (γ -sint (A) $\le \gamma$ - scl (A) ------ (2). By (1) & (2) we have, $A \lor \gamma$ -scl (γ -sint (A)) $\le \gamma$ -scl (A). This proves (i).
- (ii) By Proposition 5.2(i), γ -sint (A) \leq A ----(1). Again using proposition 6.3(i), A $\leq \gamma$ -scl (A). Then γ -sint (A) $\leq \gamma$ -sint (γ -scl (A)) ---(2). From (1) & (2), we have γ -sint (A) $\leq A \land \gamma$ -sint (γ -scl (A)). This proves(ii).
- $(iii) \ \ By \ Proposition \ \ 6.4, \ \ \gamma\text{-scl} \ (A) \leq cl \ (A).$

we get int $(\gamma$ -scl $(A)) \leq$ int (cl(A)).

- (iv) By (i), γ -scl (A) \geq A $\vee \gamma$ -scl (γ -sint(A)). Then we have
- $int \ (\gamma \text{-scl}(A) \geq int \ (A \lor \gamma \text{-scl} \ (\gamma \text{-sint} \ (A)) \). \ Since \ int \ (A \lor B) \geq int \ (A) \lor int \ (B),$

 $int (\gamma \text{-scl} (A) \ge int (A) \lor int(\gamma \text{-scl}(\gamma \text{-sint} (A))) \ge int (\gamma \text{-scl} (\gamma \text{-sint} (A))).$

The family of all fuzzy semi open (fuzzy semi closed, fuzzy strongly semi open, fuzzy strongly semi closed, fuzzy γ -semi open, fuzzy γ -semi closed, fuzzy γ -open, fuzzy γ -closed) sets of an fuzzy topological space(X, τ) will be denoted by Fso(τ) (Fscl(τ), Fsscl(τ), Fsscl(τ), F γ so(τ), F γ scl(τ), F γ cl(τ)).

Proposition 6.8: Let (X, τ) be a fuzzy topological space. Then

- 1) $Fsscl(\tau) \wedge Fscl(\tau) \leq F\gamma scl(\tau).$
- 2) $Fsso(\tau) \wedge Fso(\tau) \leq F\gamma so(\tau).$
- 3) $F_{\gamma o}(\tau) \wedge F_{so}(\tau) \leq F_{\gamma so}(\tau).$
- 4) $F\gamma cl(\tau) \wedge Fscl(\tau) \leq F\gamma s(\tau).$

Proof:

Let A be a fuzzy subset of $Fsscl(\tau) \land Fscl(\tau)$. Then $A \in Fsscl(\tau)$ and $A \in Fscl(\tau)$. By the Definition of fuzzy strongly semi closed, $A \ge cl(int(cl(A))) \ge int(cl(A)) \ge int(\gamma-cl(A))$. By the Definition of fuzzy semi closed, $A \ge int(cl(A)) \ge int(\gamma-cl(A))$. Therefore $A \ge int(\gamma-cl(A))$. That is A is fuzzy γ -semi closed. This proves (1).

Let $A \in Fsso(\tau) \land Fso(\tau)$. Then $A \in Fsso(\tau)$ and $A \in Fso(\tau)$. By the Definition of fuzzy strongly semi open, $A \le int(cl(int(A))) \le cl(int(A)) \le cl(\gamma-int(A))$. Again using the Definition of fuzzy semi open, $A \le cl(int(A)) \le cl(\gamma-int(A))$. Therefore A is fuzzy γ -semi open. This proves (2).

 $\begin{array}{ll} \mbox{Let } A \in F \gamma o (\tau) \land F s o (\tau). \mbox{ Then } A \in F \gamma o (\tau) \mbox{ and } A \in F s o (\tau). \mbox{ By the Definition of fuzzy } \gamma \mbox{-open, } A \leq cl(int \ (A) \lor int(cl \ (A). \mbox{ That is } A \leq cl(int \ A) \leq cl(\gamma \mbox{-int } (A)). \mbox{ Again using the Definition of fuzzy semi open, } A \leq cl(int \ A). \mbox{ This implies that } A \leq cl(\gamma \mbox{-int } (A)). \mbox{ Therefore } A \mbox{ is fuzzy } \gamma \mbox{-semi open. Hence proved } (3). \end{array}$

Definition 6.9: An fuzzy topological space (X, τ) is fuzzy γ -SO-extremely disconnected if and only if γ -scl(A) is a fuzzy γ -semi open set, for each fuzzy γ -semi open set A of (X, τ) .

Theorem 6.10: Let (X, τ) be an fuzzy topological space. Then the following statements are equivalent:

- (i) X is γ -SO-extremely disconnected.
- (ii) γ -sint(A) is a fuzzy γ -semi closed set, for each fuzzy γ -semi closed set
 - A of X.
- (iii) γ -scl(γ -scl (A))^c = (γ -scl (A))^c, for each fuzzy γ -semi open set A of X.
- (iv) $B = (\gamma \text{scl} (A))^c$ implies $\gamma \text{scl}(B) = (\gamma \text{scl} (A))^c$ for each pair of fuzzy γ semi open sets A, B of X.

Proof:

(i) \Rightarrow (ii) Let A be a fuzzy γ -semi closed set of X. Then A^c is a fuzzy γ -semi open set. According to the assumption, γ -scl (A^c) is fuzzy γ -semi open set. So γ -int (A) is a fuzzy γ -semi closed set of X.

(ii) \Rightarrow (iii) Suppose that A is a fuzzy γ -semi open set of X. Then γ -scl(γ -scl (A))^c = γ -scl (γ -sint(A)^c). According to the assumption, γ -int (A^c) is a fuzzy γ -semi closed set. So γ -scl (γ -sint (A^c)) = γ -sint (A^c) = (γ -scl (A))^c.

(iii) \Rightarrow (iv) Let A and B be a fuzzy γ -semi open set of X such that B =(γ -scl (A))^c. From the assumption we have , γ -scl B = γ -scl(γ -scl (A))^c =(γ -scl (A))^c.

(iv) \Rightarrow (i) Let A be a fuzzy γ -semi open set of X. We put B =(γ -scl (A))^c. From the assumption, we obtain that γ -scl (B) = (γ -scl (A))^c,

so $(\gamma$ -scl (B))^c = γ -scl(A). Hence γ -sint (B^c) = γ -scl(A). Thus γ -scl(A) is fuzzy γ -semi open set of X.

Definition 6.11: A fuzzy set A of fuzzy topological space (X, τ) is said to fuzzy γ -t-set if int (A)=int(γ -cl(A)).

Theorem 6.12: Let(X, τ) be a fuzzy topological space. Then a fuzzy subset A is fuzzy γ -t-set if and only if A is fuzzy γ -semi closed.

Proof:

Let A be a fuzzy γ -t-set. Then by using Definition 6.10, int(A) = int(γ -cl(A)). Therefore int(γ -cl(A)) = Int(A) \leq A. Hence A is fuzzy γ -semi closed. Conversely, A is fuzzy γ -semi closed. Then by using Definition 2.1, int(γ -cl(A)) \leq int(A). Also A $\leq \gamma$ -cl(A). This implies that int A \leq int(γ -cl(A)). Hence int (A)= int(γ -cl (A). Thus A is fuzzy γ -t-set.

Theorem 6.13: Let (X, τ) be an fuzzy topological space. If A is fuzzy γ -closed, then it is fuzzy γ -t-set. **Proof:**

Let A be fuzzy γ -closed. Then by Proposition 2.10, A= γ -cl(A) and $int(A)=int(\gamma$ -cl(A)). Therefore A is fuzzy γ -t-set.

Theorem 6.14: Let (X, τ) be an fuzzy topological space. Then the intersection of any two fuzzy γ -t-set is fuzzy γ -t-set.

Proof:

Let A and B be fuzzy γ -t-set. Then by Definition 6.10, $int(A)=int(\gamma-cl(A))$ and $int(B)=int(\gamma-cl(B))$. Therefore $int(A)\wedge int(B)=int(\gamma-cl(A)) \wedge int(\gamma-cl(B)) = int(\gamma-cl(A) \wedge \gamma-cl(B))$. By Remark 2.6, $int(A\wedge B) = int(\gamma-cl(A \wedge B))$.

The following example shows that union of two fuzzy γ -t-set need not be fuzzy γ -t-set.

Example 6.15: Let $X = \{a, b\}$ and $\tau = \{0, 1, \{a_{.1}, b_{.3}\}, \{a_{.9}, b_{.7}\}\}$. Then (X, τ) is a fuzzy topological space. The family of all fuzzy closed sets of τ is $\tau^c = \{0, 1, \{a_{.9}, b_{.7}\}, \{a_{.1}, b_{.3}\}\}$. Consider $A = \{a_{.4}, b_{.7}\}$ and $B = \{a_{.8}, b_{.6}\}$. Then int $(A) = \{a_{.1}, b_{.3}\}$ and int $(B) = \{a_{.1}, b_{.3}\}$. It follows that int $(\gamma$ -cl $(A)) = \{a_{.1}, b_{.3}\}$ and int $(\gamma$ -cl $(B)) = \{a_{.1}, b_{.3}\}$. Therefore by Definition 6.10, A and B are fuzzy γ -t-set. Now $A \lor B = \{a_{.8}, b_{.7}\}$ and int $(A \lor B) = \{a_{.1}, b_{.3}\}$ but int $(\gamma$ -cl $(A \lor B)) = \{a_{.9}, b_{.7}\}$. It shows that $A \lor B$ is not an fuzzy γ - t-set.

References

- [1] M.Athar and B.Ahmad, Fuzzy Boundary and Fuzzy Semiboundary, *Advances in Fuzzy systems*, vol. 2008, 586893, 9 pages.
- [2] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, *J.Math.Anal.Appl.* 82(1)(1981), 14-32.
- [3] Biljana Krsteska, Fuzzy Strongly preopen sets and fuzzy strongly precontinuity, *Mat. Vesnik* 50(1998),111-123.
- [4] C.L.Chang, Fuzzy Topological Spaces, J.Math. Anal, Appl.24(1968), 182-190.
- [5] Luay A.Al.Swidi, Amed S.A.Oon, Fuzzy γ-open sets and fuzzy γ-closed sets, Americal Journal of scientific research, 27(2011), 62-67.
- [6] T.Noiri and O.R.Sayed, Fuzzy γ-open sets and fuzzy γ-continuity in fuzzitying topology, *Sci. Math. Jpn.* 55(2002).
- [7] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, .Math.Anal.Appl., vol. 58, no 1, pp. 135-146, 1977
- [8] L.A.Zadch, Fuzzy Sets, Information and control, vol.8, Pp 338-353, 1965.