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Abstract: A multiset is a collection of objects in which repetition of elements is significant. In this paper an 

attempt to define a symmetric group under multiset context is presented and the analogous to Cayley’s theorem 

is derived.    
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I. Introduction 
 Classical set theory states that a given element can appear only once in a set, it assumes that all 

mathematical objects occur without repetition. Thus there is one number four, one field of complex numbers, 

etc. So, the only possible relations between two mathematical objects are (1) they are equal, or (2) they are 

different. In Science and in the ordinary life the situation is not at all like this. In the physical world it is 

observed that there is an enormous repetition. For instance, there are many hydrogen atoms, many water 

molecules many strands of DNA, etc. Coins of the same denomination and year, electrons or grains of sand 

appear to us as the same, despite being obviously separate. This leads to three possible relations between any 

two physical objects; they are different, they are the same but separate, or they are coinciding and identical, but 
for the sake of definiteness we say that two physical objects are the same, or equal. If they are indistinguishable, 

but possibly separate, and  identical if they physically coincide (identity is a refinement of equality). 

 Multisets (sometimes also called bags [7]) are set-like structures where an element can appear more 

than once [8].Thus, a multiset differs from a set in that each element has a multiplicity, which is a natural 

number indicating (loosely speaking) how many times it is a member of the multiset. One of the most natural 

and simple example is the multiset of prime factors of a number n . Thus, the number 504  has the factorization   
3 2 1504 2 3 7  which gives the multiset  2,2,2,3,3,7 . Another example is the multiset of solutions of an 

algebraic equation. Everyone learns in secondary school that a quadratic equation has two (complex) solutions, 

but in some cases they are both the same number. Thus the multiset of solutions of the equation could be 

 2,5 , or it could be  3,3 . In the latter case it has a solution of multiplicity 2 . 

        The word multiset was coined by De Bruijin in a private communication with D. Knuth in 1981, but the 

first person that actually used multisets was Richard Dedekind in 1898 [9]. A complete survey of the 
development of multiset theory can be found in [10]. 

       Research on the multiset theory has not yet gained ground and is still in its infant stages. The research 

carried out so far shows a strong analogy in the behavior of multisets and sets and it is possible to extend some 

of the main notions and results of sets to that of multisets for instance, the theoretical aspects of multisets by 

extending the notions of relations, functions, composition and  partition has been explored in [4 ] and [6]. In 

another related development multiset relation, a partially ordered multiset (pomset), chains and antichains of 

pomsets has been defined and some results related to multisets and pomsets particularly the analogous of 

Dilworth's theorem and its dual for pomsets obtained in [5 ]. The concept of topological spaces in the context of  

multisets has been put forward in [ 3] . Here, notion of M-topological space and the concept of open multisets 

are introduced.  Furthermore the notions of basis, sub basis, closed sets, closure and interior in topological 

spaces are extended to M-topological spaces . Continuous multiset functions are defined and related properties, 

in particular the comparison of discrete topology and discrete M-topology are established. Recently in [1] and  
[2], the  notion of multigroups, submultigroups, abelian  multigroups, normal multigroups and factor 

multigroups  has been  introduced.   In this paper we define a symmetric multigroup  and derive the analogous 

Cayley’s theorem . We presents the paper’s preliminaries comprising of some basic definitions, notations and 

derive some results  required in  the paper in section 2. We establish the composition of bijective multiset 

functions defined in [8] as a group and use the result in the definition of symmetric  multigroup to derive the 

analogous of Cayley’s theorem in section 3.  

 

II. Preliminaries 

Definition 2.1 Formally, a multiset ( mset for short) M over a set S  is a cardinal-valued function. That is, M
on S  is a map from S  to the set   of natural numbers denoted :M  S . For objects ,  ( )x M xS  
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denotes the number of times x  appears in M  also called the multiplicity of x  in M . The multiplicity of an 

element in a mset is axiomatized as unique. i.e ( ( ) ( ) )x n m M x n M x m n m        (see [7])  

   
1 2

1 1 2 2 1 2 , ,...,
, ,..., , ,...,

n
n n n k k k

M k x k x k x x x x   also means that M is an mset with 
1x  appearing 

1k  times, 
2x  appearing 

2k  times and so on. i.e 
1 1 2 2( ) , ( ) ,..., ( )n nM x k M x k M x k   .  

We denote the cardinality of a mset M by M  where 

1

n

i

i

M k


 . A mset M is finite if and only if  its 

cardinality is finite. It follows that ( ) 0M x x M   . However ( ) 0  if and only if M x x M  .An mset 

( )M  SM such that ( ) 0 M x x  S  is called an empty mset. We denote an empty mset M by   and a 

class of all finite msets over a set S  by ( )SM  defined: 

 ( ) :  and ( ) 0 for all but finitely many M M M x x M   S SM . Here, S  is called the 

generating set or ground or base set for ( )SM . 

Definition [8] 2.2  Two msets , ( )M N SM  are said to be equal denoted M N  if and only if 

( ) ( ) for all M x N x x S .  

Definition 2.3 For any mset ( )M  SM ,  the predicate ( )set M is defined: 

( ) ( ( ) 1)set M x n M x n n      . Thus, for any set S , ( )set S . 

Definition [8] 2.4. Let , ( )M N SM . M is a submultiset (submset for short) of N ,denoted 

 or N MM N   if and only if ( ) ( )  M x N x x  S . 

For mset terms M  and N  we denote 
NM  for unique submset of M  that contains copies of the element N  

in M  and nothing else. Denoting  
t

x  for a mset containing exactly t  copies of x we define  x t
M x  if 

and only if  M x t  and  x t
M x t  . 

Theorem [8] 2.1 . Two msets , ( )M N SM  are equal if and only if  and M N N M  . 

Definition [8]  2.5 Let ( )M  SM . Then the root set M 
 of M is defined: 

 ( ) 0M x x M x    S .In other words, if    
1 2

1 2 , ,...,
, ,...,   0, 1,

n
n ik k k

M x x x k i n   , 

we have  1 2, ,..., nM x x x  .  Note that  ( )set M x M x M      and For any ( )M M S ,  

M M    (see [8] for details). 

Definition [8] 2.6.  A  multiset  
1 2 3

1 2 , , ,...,
 , ,..., ( )

n
n k k k k

x x x M S M is regular if and only if  

1 2 3 ... nk k k k k      

 

III. Symmetric Multigroups 

I  Multiset functions 
For functions between arbitrary msets it is required that images of indistinguishable elements of the domain 

must be indistinguishable elements of the range, but images of distinct elements of the domain need not be 

distinct elements of the range.  

A function f  from mset M  to mset N  is rooted in the function f from M

 to N 

. 

We think of M as partitioned into submsets zM , and N  as partitioned into submsets 'zN . Depending upon  

the nature of the root function f from M 
 to N 

 certain submsets 'zN  will be of the form ( )f zN  where 

z M . We think of the function from  to M N  as acting upon all copies  of z  in zM  and some copies of 

( )f z  in ( )f zN  (although which copies of ( )f z  in ( )f zN  cannot be determined). 
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Definition [8] 3.1. Let , ( )M NM S . A function from  to M N  is defined to be a function from M 
 to 

N 
. i.e every function between msets is a set of ordered pair sets. 

Definition [8] 3.2.  Let , ( )M NM S  such that M N . The identity mset function :I M N  is just 

the identity function :I M N  . Note that M N M N      

Definition[4,8] 3.3.   Let , , ( )M N PM S  and :f M N , :g N P  be mset functions. The mset 

composition  function  :g f M P   is just the composition function :g f M P   .   

Definition 3.4 Let , ( )M NM S  such that :f M N  and :g M N  are mset functions. Then  

f g  if and only if  ( ) ( ) for all f x g x x M   . 

Definition [8] 3.5.  Let , ( )M NM S . 

  The function  :f M N  is an injection  if and only if    

      (i)  :f M N   is an injection and   

    (ii)   ( ) .z f zz z M M N                                                                   (1) 

 The function  :f M N  is a surjection  if and only if    

      (i)  :f M N   is a  surjection  and   

    (ii)   ( ) .z f zz z M M N                                                                   (2) 

 The function  :f M N  is a bijection if and only if    

      (i)  :f M N   is a bijection and   

    (ii)   ( ) .z f zz z M M N                                                                   (3) 

I.e. the function  :f M N  is a bijection if and only if   it is both injective and surjective. 

Definition 3.6 [4].  Let , ( )M NM S . The function 
1 :f N M   is an inverse function of the function 

:f M N  if and only if :f M N  is bijective. 

Theorem 3.1 [4].  Let , , ( )M N PM S  such that :f M N , :g N P  are bijections. Then  g f  is 

a bijection. 

Theorem 3.2 [4].  Let , ( )M NM S  such that :f M N  is a bijection. Then 
1f 
 is a bijection 

 

II  Group of bijective multiset functions 

Let ( )M M S . We denote the set of bijective mset functions  :f M M    by
MM 

. 

Proposition 3.3 For any ( )M M S ,  the identity mset function :I M M defined by 

( )I x x x M     is bijective. 

Proof 

Since ( )I x x x M     we have ( )I M M   and  

For all x M   we have ( ) ( )x I x I M   . In particular ( )M I M  . 

Thus ( )M I M   and :I M M   is bijective. 

Now  for all x M  .  ( )x I xM M .  Hence :I M M  is bijective.  

 

Proposition 3.4 Let ( )M M S  and 
Mf M  . Then f I I f f    where 

MI M   is identity. 

Proof. 

Let x M  . We show that ( ) ( ) and ( ) ( )I f x f x I f x f I x    . 

Now  ( ) ( ) ( )I f x I f x f x   . Thus, I f f  . 

But  ( ) ( ) ( ) ( ) ( ( ) ( )I f x f x I f x f x f I x f I x         
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Thus, f I I f f    

Proposition 3.5  For any  ( )M M S , 
MM   .  

Proof 

The prove follows from proposition 3.3 

Proposition 3.6 . For any 
Mf M  , we have   

(i)
1 Mf M    (ii)  

1 1 Mf f f f I M       

Proof: 

Let 
Mf M  . Then (i) follows from theorem 3.2 where M N . 

(ii) 
1 1 M

Mf f f f I I M        (see [6] for details) where M N . 

 

Proposition 3.7. For any , Mf g M  , we have , Mf g g f M    

Proof 

The results follows from theorem 3.1 where M N . 

Proposition 3.8. Let ( )M M S .  The pair  ,MM 
 is a group. 

Proof: 

Let , Mf g M  .  It is clear that 
1 Mg M   and 

Mf g M   (from propositions 3.6 and 3.7). 

In particular, 
1 Mf g M   .  Thus,  ,MM 

 is a group. 

 

III  Symmetric multigroups. 

 Definition [1] 3.7 A multiset ( )M SM  is called a multigroup if and only if    M 
 is a group.  

 Definition  3.8  A  permutation of a multiset ( )M SM  is a bijective mapping : M M  . 

It is clear from proposition 3.8 that the  permutations of a multiset forms a group called symmetric multigroup 

where the composition of bijective multiset functions is its binary operation. We denote the symmetric 

multigroup of a multiset ( )M SM  by ( )mulS M  

A subgroup of ( )mulS M  is called a permutation multigroup. 

Example 3.1 Let  , , ,S e a b c  and  , , , , , , , , , ( )e e e a a b b b c c M S M .

3 2 3 2 3 2

,

( )

,

,

mul

e e e a a b b b c c e e e a a b b b c c

e e e a a b b b c c b b b c c e e e a a
S M

e e e a a b b b c c e e e a a b b b c c

e e e c c b b b a a b b b a a e e e c c

e a b c e a b

e a b c b c e

    
    
   

  
    
    
    

              
                

               3 2 3 2 3 2 3 2 3 2

, ,
c e a b c e a b c

a e c b a b a e c

                        
                            

                        
 

Notes that the order   ( ) 4 10!mulS M    

However, if the multiset  ( )M SM is regular, where  
1 2 3

1 2 , , ,...,
, ,...,

n
n k k k k

M x x x and  

1 2 3 ... nk k k k     then  ( ) !mulS M n
1

!   0
n

i i

i

k k


 
  
 
 and n M   

Example 3.2 Let  , ,S e a b  and  , , , , , , , , ( )e e e a a a b b b M S M . 
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, ,

( ) , ,

,

mul

e e e a a a b b b e e e a a a b b b

e e e a a a b b b a a a b b b e e e

e e e a a a b b b e e e a a a b b b
S M

b b b e e e a a a e e e b b b a a a

e e e a a a b b b e e e a a a b b b

b b b a a a e e e a a a e e e b b b

    
    
    
     

     
    
    
    
     

 

i.e  
3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3

, , ,

( )

, ,

mul

e a b e a b e a b

e a b a b e b e a
S M

e a b e a b e a

e b a b a e a e

                      
                           
                      


                 
                   
                 3 3

b

b

 
 
 
 

    
      

     

 

( ) ! 3! 3 2 1 6mulS M M       . 

Notes that if the  multiset  
1 2 3

1 2 , , ,...,
, ,...,

n
n k k k k

M x x x is such that  for i jk k i j  , then  

( )mulS M  is trivial. That is  ( )mulS M I  where 

1 2 3

31 2

31 2

...

n

n

nk k k k

x xx x
I

x xx x

       
                 

 

Proposition 3.9. For any regular  multigroup  G ( )SM , G
is isomorphic to a subgroup of  ( )mulS G  

Proof: 

Let :g G G    be  a mapping  for a fixed g G    defined: 

( )  for all g x gx x G   . 

This is a well-defined mapping. Indeed if x y  then gx gy  so that ( ) ( )g gx y  . 

Next we show that  g is  one-to-one. To see this, suppose that ( ) ( )g gx y  . Then gx gy  and by 

cancellation property, x y . To see that g  is onto, let y G . Then 
1g y G   and 

1( )g g y y   . 

Hence,  :g G G    is a bijection 

Since  G ( )SM  is regular, we have ( )gx xG G .  

 Hence, :g G G   is a bijection.   In particular ( )g mulS M  . 

Next, we define : ( )mulG S G   by ( ) gg   . This is a well-defined mapping. For if 1 2g g  then 

1 2  for all g x g x x G  , that is, 
1 2
( ) ( ) for all g gx x x G     and hence 

1 2
g g  , i.e 

1 2( ) ( )g g   . Now given 1 2,g g G  we have  

1 2 1 1 21 2 1 2 2( ) ( ) ( ) ( ) ( ) for all g g g g gx g g x g g x g x x x G          

Thus, 
1 2 1 21 2 1 2( ) ( ) ( )g g g gg g g g        , and so   is a homomorphism. 

Finally we show  that   is one-to-one. Indeed , if 1 2( ) ( )g g    then 
1 2
( ) ( ) for all g gx x x G    . In 

particular,  
1 2
( ) ( )g ge e  . That is, 1 2g e g e  or 1 2g g  

Now for onto, let ( )mulS G  . Clearly for some g G  we have ( )g g    . 

Thus, for all ( )mulS G  , there exist g G such that ( )g   . 

Hence, ( )mulG S G   

Note that  this does not hold for any irregular multigroup. 
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