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Abstract: The time series data of interacting legumes  grown in oil uncontam- inated utisol have  

been  collected.  However, the dynamics of a best-fit math- ematical  model  that can  be used  to 

describe the interaction  between cowpea and  groundnut poses  a challenging interdisciplinary 

approach. We  propose to use  the 1-norm penalty function method to select  the best-fit model  

parame- ters  from  a  list  of other  candidate  logistic  models.  A mathematical  analysis of this 

best-fit interspecific interaction model  will  be  conducted.  The  novel results which  we have  

achieved in this study will be presented and  discussed. 
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I. Introduction 
This  simulation study is based  on the current data which was collected by two experts in  

microbiology  who  are  working  in  the Niger  Delta Region  of Nigeria ([1]).  In their research  report, 

the growth data of cowpea and  groundnut over a growing season in weeks were provided  in an 

uncontaminated utisol were obtained. However,  their  focus of research  was not  on numerical  

simulation  analysis  which uses  the notion  of the three  popular  mathematical  norms  to select  the 

best-fit model  parameters  which  characterize  the interaction  dynamics  between  cowpea and 

groundnut. 

There  is an extensive  collection  of literatures  on themes  which relate  to plant- plant 

interactions, modelling biological interacting populations, equations of deter- minate growth and plant 

growth analysis  to mention a few ([3]; [4]; [5]; [6]; [7]; [8]; [9]; [10]; [11]; [12]).  All these useful citations 

deal more with clearly defined model formulations which indicate sufficient ecological insights.  However, 

the application of which selection method is used to select the best-fit model parameters is rarely a 

computational approach. Because of the sophistication of measuring  the agreement between  provided  
data and  simulated  data over a time  interval  which  is usually taken  for granted  in most  parameter  

estimation  analysis  of biological interaction data, we will attempt to define the method of penalty 

function selection method otherwise called the cost function selection method in this paper.  We would 

think that there may be some environmental perturbations and other features of the eco- logical 

instability which might change the best-fit behaviour  between the given data and  simulated data which 

we do not propose  to model in this present simulation study. 

Given these data on the growth of legumes ([1]), it is a challenging scientific prob- lem to 

construct a mathematical model which describes  the dynamics  of any  two interacting legumes within 

an uncontaminated environmental setting.  Attempting to develop these distinct nonlinear  model 

equations will provide crop scientists with useful information such as the growth rates for two types of 

legumes, the intraspe- cific coefficients of legumes and their mass law action or interspecific coefficients 
as is popularly  known in mathematical biology and  molecular  physics.  The  informa- tion about the 

doubling times of the two interacting legumes is an important insight which will assist further research  in 
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the stabilization of the mathematical model of interacting  legumes and  other  land  equivalent  ratio  

studies  in livelihood  analysis and  possibly  about the numerical  simulation of mutualism due  to 

increasing  sea level rise from a competition interaction model  between two legumes  in severely 
affected communities in the Niger Delta Region of Nigeria. 

For the purpose  of our present study, we propose to utilize the penalty-function selection methods to 

select the best-fit model parameters from these uncontami- nated agricultural data.  As far as we know, 

this novel innovative numerical  sim- ulation technique has not been previously  implemented 

computationally to tackle this interesting proposed  scientific problem  in the biological sciences. 

 

II. Methodology 
In this study, we will focus on the application of the three popular  mathematical norms ([2]) to 

select the best-fit parameters which are expected to characterize the dynamics of the interaction between 
two legumes such as the cowpea and groundnut over the growth  season  in weeks.  The  main  thrust of 

this  method  concerns  how well to select the parameters which will provide  the best-fit between the 

provided data and  our  simulated  data.   We  will deduce  this  characteristic  of these  data if we can  

successfully find the local minimum  from a sequence  of the 1-norm,  2- norm and infinity-norm 

monotonic values.  Without a detailed familiar simplication about the notions of mathematical norms,  

we will simply present our calculations subsequently which we have obtained in the context of selecting 

the best-fit model parameters from some uncontaminated data of cowpea and groundnut. 

The core part of our method depends on an appropriate set up of a single initial value logistic 

model with only two parameters namely the intrinsic growth rate for the growing cowpea as well as the 

two similar parameters for the growing groundnut over a growing period in weeks. The data of [1] were 

collected every two weeks. Our proposed  simulation technique is constructed using the logic that if the 
beginning of the first week starts on the first day, then the seond week will start on day 8. In our 

context of the length of the growing period, subsequently after every two weeks the growth data will be 

obtained by simulation on day 22, followed by day 36, then on day  50, on day  64 and  on day  78.   By 

this  proven  procedure,  our  simulated data and  the provided  data will have  six  data points.   

Therefore,   we can  now measure the error between the provided  data and our simulated data provided  

that we can successfully find the local minimum  from the penalty-functions sequence of monotonic 

precise values. 

In the following sequence of results, our aim is to find the best-fit model param- eters  using  the 

three  popular  mathematical  norms.   The  estimated  daily  growth rate for the cowpea data is 0.0225. 

This value is calculated by dividing the second data value of 1.81 by the first data value of 1.32 and 

taking the logarithm to basee. This  estimated  growth  rate of 0.315695108679455 is called the weekly 

growth rate. Our expected daily growth rate of 0.022549650619961 can now be obtained by dividing this 
weekly growth rate by 14 since the data provided  were collected every two weeks. For the purpose  of this 

study, we prefer to consider only the estimated daily growth rate which is approximated to only 4 

decimal places. 

 
Examples Calculation  of the local minimum 

no a b ss 1 − norm 

1 0.0225 0.0132 1.71 3.0556 

2 0.0225 0.0115 1.96 2.3841 

3 0.0225 0.0102 2.21 1.7767 

4 0.0225 0.0091 2.46 1.2506 

5 0.0225 0.0083 2.71 1.1121 

6 0.0225 0.0076 2.96 1.0363 

7 0.0225 0.0070 3.21 0.9671 

8 0.0225 0.0065 3.46 1.2757 

9 0.0225 0.0061 3.71 1.6423 

10 0.0225 0.0057 3.96 2.0341 

Table 1. Calculation of the local minimum  for the Cowpea data: 

the notation ss stands for the steady state 

 

Now, what do we learn from Table  1? It is very characteristic of this table that all the values 

of the 1-norm start first to decrease to a value, then begin to increase. This  critical  value  in the 
behaviour  of the monotonic  sequence of values  is called the local minimum  for the 1-norm.   Hence,  

the local minimum  for the 1-norm  is 0.9671. 
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Our  next  dauting  task  is to attempt  to search  for  the smaller  values  of the local minimum  than 

this local minimum  which we have calculated. We decided to tackle this challenging  numerical  

simulation problem  by the tedious process  of a further  gridding  around  this  value  of the intraspecific  
coefficient  b of the cowpea data where a smaller local minimum  can be found.  Without detailed 

explanations which we have  done in the previous  sections,  we will henceforth  only display  the final 

outputs of our calculated results about the search for a smaller local minimum from the cowpea time 

series data. 

From  Table  2, we are  yet  to find a smaller  local minimum  of which  the best- fit model  

parameters of these cowpea  data between the provided  data and  our simulated data can be selected. 

So far, all the error values are bigger than the local minimum  value of the 1-norm which is 0.9671. 

Next, we will conduct a second set of further gridding to find out if we can select best-fit parameters 

from a smaller local minimum  for the 1-norm. 

From  Table  3, all the error  values for the 1-norm best-fit selection methods are bigger than 

the local minimum  value of 0.9671 for the 1-norm. 
From Table 4, we are yet to find a smaller local minimum  for the 1-norm best-fit penalty 

function selection method.  In this scenario,  we will continue to search for the best-fit  model  

parameters  which  correspond  to the local minimum  using  the 1-norm method. 

To embark  upon the systematic search for a smaller local minimum  using the 1- norm penalty 

function method which is smaller than the first local minimum  value of 0.9671, we will prefer to present 

the summary  of our several repeated calculations which would clarify how we have  obtained a smaller  

1-norm  local minimum  for a chosen parameter  space.   When  the thirteen  values  of the intraspecific  

coefficient 

 
Examples Calculation  of the local minimum 

no a b ss 1 − norm 

1 0.0225 0.008523 2.64 1.1526 

2 0.0225 0.008491 2.65 1.1469 

3 0.0225 0.008459 2.66 1.1411 

4 0.0225 0.008427 2.67 1.1354 

5 0.0225 0.008396 2.68 1.1297 

6 0.0225 0.008364 2.69 1.1239 

7 0.0225 0.008333 2.70 1.1182 

8 0.0225 0.008303 2.71 1.1126 

9 0.0225 0.008272 2.72 1.1069 

10 0.0225 0.008242 2.73 1.1012 

11 0.0225 0.008212 2.74 1.0956 

12 0.0225 0.008182 2.75 1.0899 

13 0.0225 0.008152 2.76 1.0869 

Table 2. Calculation of the local minimum  for the Cowpea data: 

first set of further gridding 

 
Examples Calculation  of the local minimum 

no a b ss 1 − norm 

1 0.0225 0.008123 2.77 1.0846 

2 0.0225 0.008094 2.78 1.0821 

3 0.0225 0.008065 2.79 1.0797 

4 0.0225 0.008036 2.80 1.0772 

5 0.0225 0.008007 2.81 1.0747 

6 0.0225 0.007979 2.82 1.0723 

7 0.0225 0.007951 2.83 1.0698 

8 0.0225 0.007923 2.84 1.0673 

9 0.0225 0.007895 2.85 1.0648 

10 0.0225 0.007867 2.86 1.0622 

11 0.0225 0.007840 2.87 1.0597 

12 0.0225 0.007813 2.88 1.0572 

13 0.0225 0.007786 2.89 1.0546 

Table 3. Calculation of the local minimum  for the Cowpea data: 
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second set of further gridding 

are 0.007426, 0.007401, 0.007377, 0.007353, 0.007330, 0.007305, 0.007282, 0.007258, 

0.007235, 0.007212, 0.007189, 0.007166 and 0.007143, we have found the monotonic sequence of the 1-
norm values to be 1.0178, 1.0151, 1.0124, 1.0097, 1.0071, 1.0043, 

1.0016, 0.9988, 0.9961, 0.9934, 0.9906, 0.9879 and  0.9851.   We  observe  from our calculations that 

none of these 1-norm values or error values between the model of [1] and  our simualted  data over a 

time interval is smaller  than our target 1-norm value of 0.9671. 

In order to overcome this challenging  parameter estimation problem,  we choose another parameter space 

with the expectation that we may obtain a smaller 1-norm local minimum.  In this scenario, we will 

present our calculations in the table below. 

 
Examples Calculation  of the local minimum 

no a b ss 1 − norm 

1 0.0225 0.007759 2.90 1.0520 

2 0.0225 0.007732 2.91 1.0494 

3 0.0225 0.007706 2.92 1.0469 

4 0.0225 0.007680 2.93 1.0443 

5 0.0225 0.007653 2.94 1.0416 

6 0.0225 0.007627 2.95 1.0390 

7 0.0225 0.007601 2.96 1.0364 

8 0.0225 0.007576 2.97 1.0338 

9 0.0225 0.007550 2.98 1.0311 

10 0.0225 0.007525 2.99 1.0285 

11 0.0225 0.007500 3.00 1.0258 

12 0.0225 0.007475 3.01 1.0232 

13 0.0225 0.007450 3.02 1.0205 

Table 4. Calculation of the local minimum  for the Cowpea data: 

third set of further gridding 

 
Examples Calculation  of the local minimum 

no a b ss 1 − norm 

1 0.0225 0.007120 3.16 0.9822 

2 0.0225 0.007098 3.17 0.9795 

3 0.0225 0.007076 3.18 0.9767 

4 0.0225 0.007053 3.19 0.9738 

5 0.0225 0.007009 3.20 0.9682 

6 0.0225 0.006988 3.21 0.9655 

7 0.0225 0.006966 3.22 0.9626 

8 0.0225 0.006944 3.23 0.9597 

9 0.0225 0.006923 3.24 0.9569 

10 0.0225 0.006902 3.25 0.9541 

11 0.0225 0.006881 3.26 0.9570 

12 0.0225 0.006860 3.27 0.9653 

Table 5. Calculation of the local minimum  for the Cowpea data: 
another set of further gridding 

From  Table  5, we can  clearly  observe  that we have  now found  a smaller  local minimum  value 

of 0.9541 when compared  to the first local minimum  value of 0.9671 when the 1-norm penalty function 

selection method was implemented. 

 

III. Discussion of Results 
In this numerical  simulation problem in the context of using the 1-norm to select the best-fit 

logistic model parameters between the provided  model of [1] and  our simulated data, we have found the 

following useful results which we have not seen elsewhere. 
Based  on  the [1]  cowpea  data, our  estimated  local minimum  value  using  the 1-norm  is 

0.9671.  This  first local minimum  corresponds  to the best-fit parameter values of a = 0.0225, b = 

0.0070, ss = 3.21, T = 0 : 1 : 90 and the initial condition value  of 1.50.   The  provided  fourth  nightly  

data are  1.32,  1.81,  1.91,  2.0,  2.54and  2.71.  In this scenario,  our corresponding  simulated fourthly 
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nightly data are represented as Y (8), Y (22), Y (36), Y (50), Y (64) and Y (78).  Here, the data point Y 

(8) of our simulated data specifies the value at the beginning  of the second week which compares with 

the provided  data value of 1.32. The data point Y (22) of our simulated data specifies the value after two 
weeks which compares with the provided data value of 1.81. Other data points of our simulated data 

specify the values after every two weeks. Our algorithm which we have designed to calculate the 

difference between the provided  data and our simulated data over a time interval of 90 days and  also 

implemented to calculate the size of the errors  between the provide  data and our simulated data is 

based on this detailed idea. 

A further gridding  produces  a smaller  local minimum  value  using  the 1-norm penalty 

function selection method which is 0.9541. Here, the corresponding  best-fit model parameters are a = 

0.0225, b = 0.006902, ss = 3.26, T = 0 : 1 : 90 and  the initial condition value of 1.50 with the same 

provided  data sets and simulated data over a time interval. 

Therefore, our best-fit selected logistic candidate model using the 1-norm penalty function selection 

method for the growing cowpea over time in weeks is 

 
with the initial groundnut biomass of 1.50 grams. 

So far, we have  obtained a total of 2 deterministic initial value  logistic models which fully 
approximate the dynamics  of self-interaction for individual  cowpea and groundnut time series data. For 

this present simulation analysis to provide further insights  into  the understanding  of the interaction  

dynamics  between  the cowpea and  groundnut legumes  in  an  uncontaminated environment,  it is 

worthwhile to specify the interspecific interaction component of our proposed  self-interaction or 

intraspecific models.   In  this context, we will match the 1-norm  selected logistic model for cowpea to 

the 1-norm selected logistic model for groundnut. 

Therefore,  the 1-norm  penalty function selected interspecific interaction model between cowpea and 

groundnut under  a realistic assumed  value of the interspecific coefficient is 

 

 
with the initial cowpea biomass of 1.50 grams. 

For the groundnut data ([1]), we will only present our first local minimum  and a further gridding 

local minimum  without going into the detailed presentation of our calculations. First the local minimum  

using the 1-norm penalty function selection method is 3.1842. The best-fit parameters are a = 0.0446 

(which is called the daily growth rate for the groundnut data is similarly calculated by taking the 

logarithm to base e of the second data value  of 2.82 divided  by the first  data value  of 1.51 and  

dividing  the obtained value by 14), b = 0.0127, ss = 3.50, T = 0 : 1 : 90 and the initial biomass of 

groundnut having  the value of 1.50 grams.  By implementing the principle  of a further gridding  and 

using the 1-norm penalty function selection method, the new local minimum  for the groundnut data is 

3.1307. In this scenario, the corresponding  best-fit  parameters  are  a  = 0.00446,  b = 0.0133,  ss  = 
3.35, T = 0 : 1 : 90 and the initial groundnut biomass of 1.50 grams.  Therefore,  the best- fit selected 

logistic candidate model  using  the 1-norm  penalty function selection method for the growing 

groundnut over time in weeks is  

 
where the initial biomasses are as specified earlier on in this study. 

Without loss of generality, following the mathematical theories of steady-state solutions and  stability,  

this mathematical analysis  of the above  Lotka-Volterrra system is reported as follows: 

 
Examples Calculation  of the stability  behaviour 

no steady-state  solutions λ1 λ2 Each Type of Stability 

1 (0, 0) 0.0225 0.0446 Unstable 

2 (0, 3.3534) -0.0446 0.0208 Unstable 

3 (3.2599, 0) -0.0225 0.0120 Unstable 

4 (3.1908, 0.9543) -0.0234 -0.113 Stable 
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Table 6. Numerical calculations of the steady-state solutions and their stability 

It is very clear from this  study  that our best-fit  mathematical  model has only four steady-state 

solutions out of which three are unstable ( and will require further stabilizations) while the only co-
existence steady-state solution is said to be stable. The  trivial steady-state solution implies  that the 

two interacting populations of cowpea and groundnut will go into the ecological risk of extinction while 

the semi- trivial  steady-state  solutions  will imply  the theory  of competitive  exclusion,  that is, one 

population will survive at its carrying  capacity while the second population will be driven  into 

extinction. 

 

IV. Concluding  Remarks  and Further  Research 
In  this challenging  study,  we have  achieved  the following:  we have  used  the numerical  

technique of a 1-norm  penalty function selection method to select one mathematical  model which can 
describe  the interaction  between growing legumes of cowpea and groudnut in an uncontaminated utisol. 

This emprically  determined deterministic model guarantees the existence of the carrying capacity value 

for both the cowpea and  groundnut populations and  the inhibiting effect of cowpea on the growth  of 

groundnut  as well as the inhibiting  effect  of groundnut  on the growth of cowpea.  The  mathematical 

analysis  of the best-fit candidate model shows that the system  consisting  of a co-existence  steady-

state  solution  will be stable  using the popular  theory of the sign method of testing for the stability of a 

steady-state solution.  This steady-state solution satisfies the critical inequalities for the survival of the 

cowpea and groundnut legumes in competition for limited resources. 
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