Even-even gracefulness of some families of graphs

M.Sudha¹, A. Chandra Babu²

¹Assist. Professor, Department of Mathematics, Noorul Islam Centre for Higher Education, India. ²Professor, Department of Mathematics, Noorul Islam Centre for Higher Education, India.

Abstract: In this paper, we prove that the Dumbbell graph, Star graph, Cartesian product $P_2 \times C_n$ and $K_1 + C_n$ are even-even graceful. The even-even graceful labeling of a graph G with q edges means that there is an injection f: $E(G) \rightarrow \{2, 4, ..., 2q\}$ so that induced map $f^*: V(G) \rightarrow \{0, 2, ..., (2k-2)\}$ defined by $f^*(x) \equiv \Sigma f(x, y) \pmod{2k}$ where $k = \max \{p, q\}$ makes all distinct and even. **Keywords:** Even-even graceful labeling, Dumbbell graph, Star graph and wheel graph.

I. Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [1] in 1967, or the one given by Graham and Sloane [2] in 1980. Rosa [1] called a function f a β -valuation of a graph G with q edges if f is an injection from the vertices of G to the set {0, 1, . . . , q} such that, when each edge xy is assigned the label |f(x) - f(y)|, the resulting edge labels are distinct. Golomb subsequently called such labeling graceful and this is now the popular term. For all terminology and notation Bondy[3] has been followed. Solairaju and Chithra [4] have introduced the concept of edge-odd gracefulness. Gayathri and Duraisamy have introduced the concept of even edge-graceful labeling. A graph is even vertex-graceful if there exists an injective map f : E (G) \rightarrow {1,2,...,2q} so that the induced map f⁺ : V(G) \rightarrow {0,2,4,...,2k-2} defined by f⁺(x) = $\Sigma f(xy) \pmod{2k}$ where k = max { p, q } makes all distinct. R.Sridevi, S. Navaneethakrishnan, A.Nagarajan and K. Nagarajan [5] have introduced the concept of odd-even gracefulness. They proved that some well known graphs namely P_n , P_{n}^+ , $K_{1,n}$, $K_{1,2,n}$, $K_{m,n}$, $B_{m,n}$ are odd-even graceful. In this paper we introduce the definition even-even gracefulness and also prove that some well known graphs namely S_n , D(m,n) and $P_2 \times C_n$ etc are even-even graceful.

Definition1.1

The odd-even graceful labeling of a graph G with q edges is an injection $f: V(G) \rightarrow \{1, 3, 5, ..., 2q + 1\}$ such that, when each edge uv is assigned the label |f(u)-f(v)|, the resulting edge labels are $\{2,4, 6, ..., 2q\}$. A graph which admits an odd-even graceful labeling is called an odd-even graceful graph.

Definition1.2

A graph is even vertex graceful if there exists an injective map $f : E(G) \rightarrow \{1, 2, ..., 2q\}$ so that the induced map $f^+: V(G) \rightarrow \{0, 2, 4, ..., 2k-2\}$ defined by $f^+(x) = f(xy) \pmod{2k}$ where $k = \max\{p, q\}$ makes all distinct.

Definition1.3

A graph is even-even graceful if there exists an injective map f: E (G) \rightarrow {2, 4,..., 2q} so that the induced map f^{*}: V (G) \rightarrow {0, 2,...,(2k-2)} defined by f^{*}(x) $\equiv \Sigma f(x, y) \pmod{2k}$ where k = max {p, q} makes all distinct and even.

II. Main Results

Definition 2.1 A star S_n is the complete bipartite graph $K_{1,n}$. It is a tree with one internal node and n leaves. **Theorem 2.1** A star graph S_n is even-even graceful when n is even. Proof: Let G be a star graph with n+ 1 vertices and n edges.

Let $\{e_1, e_2, \dots, e_n\}$ be the edge set of S_{n} .

Define f: E (G) \rightarrow {2,4, ...,2q} such that (here q = n) f (e_i) = 2i; i = 1, 2,..., n.

2+4

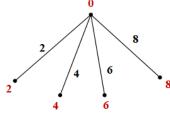
The internal vertex of S_n has induced label

$$4+6+...+2n = 2(1+2+3+...+n)$$

= $\frac{2n(n+1)}{2}$
= n (n+1)
= n.k where k = p = n+1

 $2+4+6+\ldots+2n \equiv 0 \pmod{2k}$ when n is even

Hence, the induced label of internal vertex is '0' and other vertices have induced label from 2 to 2n. **Example 2.1** The star graph S_4 is even-even graceful.

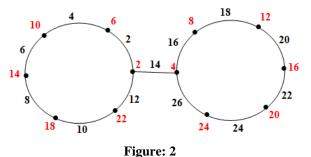


Definition 2.2 The Dumbbell graph D (m,n) is formed by two disconnected cycles C_m and C_n joined by an edge. **Theorem 2.2** Dumbbell graph D (m,n) is even-even graceful for m = n.

Proof: For any $n \ge 3$, the Dumbbell graph D(m,n) has 2n vertices and 2n+1 edges. Let $\{e_1, e_2, \dots, e_n\}$ be the edge set of the first cycle C_n . ' e_{n+1} ' be a connecting edge. $\{e_{n+2}, e_{n+3}, \dots, e_{2n+1}\}$ be the edge set of the second cycle C_n . We begin with the first cycle C_n by labeling 2 to 2n to each edge anticlockwise consecutively from one side of the connected vertex. Then we label 2n+2 to the connected edge .Finally we label 2n+4 to 4n+2 to each edge of the second cycle C_n clockwise from one side of the connecting vertex.

Hence, the vertices of first cycle C_n has induced labels f (v_i) = 4i-2 ; i = 1,2,...,n and the vertices of second cycle C_n has induced labels f (v_i¹) = 4i ; i = 1,2,3,...,n.

Example: 2.2 The Dumbbell graph with even-even graceful labeling.



Theorem 2.3 The ladder graph $P_2 \times C_n$ is even-even graceful. **Proof:**

The graph $P_2 \times C_n$ has 2n vertices and 3n edges. First we consider e_1 and e_{3n} , the two outer edges of $P_2 \times C_n$. Let $\{e_2, e_3, \dots, e_n\}$ be the edge set of one of the long sides of the ladder and $\{e_{2n+1}, e_{2n+2}, \dots, e_{3n-1}\}$ be the edge set of the other long side of ladder. Finally let $\{e_{n+1}, e_{n+2}, \dots, e_{2n}\}$ be the edge set of rungs of ladder.

Define f: E(G) \rightarrow {2,4, ...,2q} such that f (e₁) = 2; f (e_{3n}) = 6n and f (e_i) = 2i; i = 2,3,...,3n-1. From the above labeling, the induced vertex labels of the two paths P_n are f⁺(v_i) = 4(n+1)+2i for i = 1,2,...,n-3; f⁺(v_{n-2}) = 0; f⁺(v_{n-1}) = 2 & f⁺(v_n) = 4(n+1); f⁺(v₁¹) = 2(n+1); f⁺(v₁¹) = 2i for i = 2,3,...,n. Hence the graph $P_2 \times C_n$ is an even-even graceful.

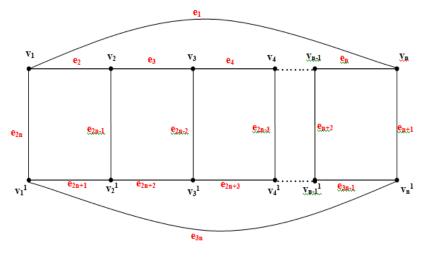


Figure: 3

Example: 2.3 The following figure shows that the graph $P_2 \times C_5$ is even-even graceful.

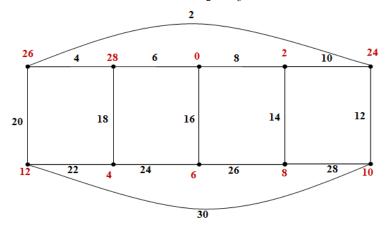


Figure: 4

Definition 2.3

The wheel, W_n , is the graph obtained by joining every vertex of the cycle C_n to exactly one isolated vertex called the center. The edges incident to the center are called spokes. **Theorem 2.4** The wheel W_n is even-even graceful when $n \equiv 0 \pmod{4}$ **Proof:**

The graph W_n has n+1 vertices and 2n edges. Let $\{e_1,e_2,e_3,\ldots,e_n\}$ be the edge set of the spokes and $\{e_{n+1},e_{n+2},\ldots,e_{2n}\}$ be the edge set of consecutive cycle. Let 'v_0'be a center vertex and v_1,v_2,\ldots,v_n be the consecutive cycle vertices.

Define f: E(G) \rightarrow {2,4, ...,2q} such that f (v₀v_i) = 2i for i = 1,2,...,n f (v_iv_n) = 4n-2(i-1) for i = 1,2,...,n Hence the induced mapping are f^{*}(v₀) = n; f^{*}(v₁) = 2n+4; f^{*}(v₂) = 2; f^{*}(v₃) = 0 and f^{*}(v_i) = 4n-2i+6 for i = 4,5,...,n.

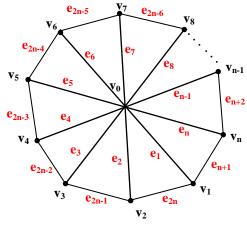
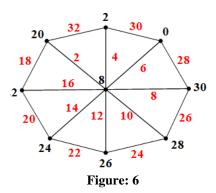


Figure: 5

Example: 2.4 The following figure shows that the graph W₈ is an even-even graceful.



Definition 2.4 The join of graphs K_1 and C_n , $K_1 + C_n$, is obtained by joining every vertex of K_1 with every vertex of C_n with an edge.

Theorem 2.5 The graph $K_1 + C_n$ is eve-even graceful if n is a multiple of 4.

Proof: The graph $K_1 + C_n$ has n+1 vertices and 2n edges. Let 'v' be vertex of K_1 and $v_1, v_2, ..., v_n$ be a vertices of the cycle. Start at the first edge which are incident to the K_1 with 2 and continue in strictly increasing order by 2. \therefore The smallest edge label is 2 and largest edge label is 2n.

Similarly, label the edges of C_n , start from right hand side with 2n+2 and continue in strictly increasing order by 2. So the smallest edge label of C_n is 2n+2 and largest edge label is 4n.

Hence the induced labels of vertices are,

 $f^{*}(v) = n$; $f^{*}(v_{1}) = 0$; $f^{*}(v_{n}) = 2$ and $f^{*}(v_{i}) = 4n-2i+2$ if n = 2,4,...,n-1

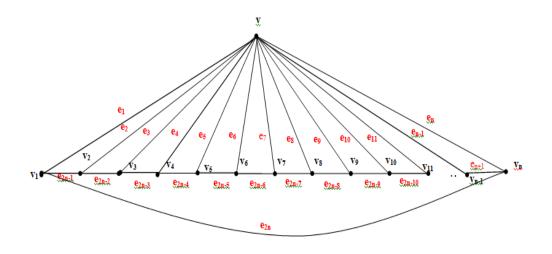


Figure: 7

Example: 2.5 The graph $K_1 + C_{12}$ and its even-even graceful labeling are shown in the following Figure.

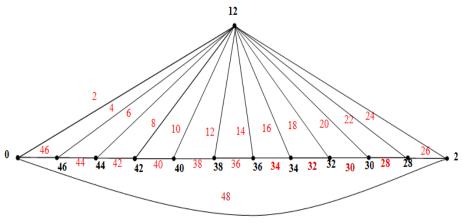


Figure: 8

III. Conclusion

In this paper we have introduced the definition for 'even-even graceful labeling'. We have proved that the Dumbbell graph, Star graph, Cartesian product $P_2 \times C_n$ and $K_1 + C_n$ are all even-even graceful. We have also proved that the wheel W_n is even-even graceful when $n \equiv 0 \pmod{4}$.

References

- A.Rosa, "On certain valuations of the vertices of a graph", Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and [1]. Breach, N. Y. and Dunod Paris (1967) 349-355.
- R. L. Graham and N. J. A. Sloane, "On additive bases and harmonious graphs", SIAM [2].
- J. Alg. Discrete Math., 1 (1980) 382-404. [1]. [3].
- J. Bondy and U. Murty, Graph Theory with Applications, North- Holland, New York (1979). Christian Barrientos, "Odd-Graceful [4]. Labelings of Trees of Diameter 5", AKCE J.Graphs. Combin., 6, No. 2 (2009) .
- A. Solairaju and K. Chithra, Edge-odd graceful labeling of some graphs, Proceedings of the ICMCS, 1 (2008) 101-107. [5].
- R. Sridevi, S. Navaneethakrishnan, A. Nagarajan and K. Nagarajan," Odd-Even graceful graphs", J. Appl. Math. & Informatics Vol. [6]. 30(2012), No. 5 - 6, pp. 913 - 923.
- [7].
- J.A.Gallian, A dynamic survey of graph labeling, Electronic, J.Comb, Sin-Min Lee, Kuo-Jue Chen, Yung-Chin Wang "On the Edge graceful spectra of cycles with one chord and dumbbell graphs", [8]. Congressus Numerantium 170 (2004), pp. 171-183.