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Abstract: In this paper, we present the space of functions of bounded    - variation in the sense of Riesz – 

Korenblum, denoted by    
 [   ], which is a combinations of the notions of bounded   – variation in the sense 

of Riesz and of bounded   – variation in the sense of Korenblum. In the light of this, we prove that the space 

generated by this class of functions is Banach algebra with respect to a given norm and we give a brief 

characterization of the composition (Nemystkii) operator on the space    
 [   ]. 
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I. Introduction 
When working with numbers such as real numbers     or complex numbers    , there are 

unambiguous notion of a magnitude | |    | | of a number, with which to measure which numbers are larger 

and which are small. One can also use this notion of magnitude to define a distance |   |    |   | between 

two real numbers x, y   , or between two complex numbers z, w   , thus giving a quantitative measure of 

which pairs of numbers are close and which ones are far apart. This situation becomes more complicated 

however when dealing with objects with more degrees of freedom. Consider for instance the problem of 

determining the magnitude of a three-dimensional rectangular box. There are several candidates for such a 

magnitude: length, width, height, volume, surface area, diameter (i.e length of the diagonal), eccentricity, and so 

forth. Unfortunately, these magnitudes do not give equivalent comparisons: box A may be longer and have more 

volume than box B, but box B may be wider and have more surface area, and so forth. Because of this one 

abandon the idea that there should only be one notion of magnitude for boxes, and instead accept that there are 

instead multiplicities of such notions, all of which have some utility. Thus for some applications one may wish 

to distinguish the large volume boxes from the small volume boxes, while in others one may want to distinguish 

the eccentric boxes from the round boxes. Of course, there are several relationships between the different 

notions of magnitude (e.g. the isoperimetric inequality allows one to obtain the upper bound for the volume in 

terms of the surface area), so the situation is not as disorganized as it may first appear [5]. 

Now we turn to functions with a fixed domain and range (e.g. functions f : [1,1] R from the interval 

[1,1] to the real line R). These objects have infinitely many degrees of freedom, and so it should not be 

surprising that there are now infinitely many distinct notions of magnitude, all of which provide a different 

answer to the question “how large is a given function f?”, or to the closely related question “how close together 

are two functions f,g?”, in some cases, certain functions may have infinite magnitude by one such measure, and 

finite magnitude by the another; similarly, a pair of functions may be very close by one measure and very far 

apart by another. Again this situation may seem chaotic, but it simply reflects the facts that functions have many 

distinct characteristics – some are tall, some are broad, some are smooth, some are oscillatory, and so forth – 

depending on the application at hand. One may want to give more weight to one of these characteristics than to 

others. In analysis, this is embodied in the variety of standard function spaces, and their associated norms, which 

are available to describe functions both qualitatively and quantitatively. While these spaces and norms are 

mostly distinct from each other, they are certainly interrelated, for instance, through such basic facts of analysis 

such as approximability by test functions (or in some cases by polynomials), by embedding such as sobolev 

embedding, and by interpolation theorems [2]. 

More formally, a function space is a class X of functions together with a norm which assigns a non-

negative number ‖ ‖  to every function   in X; this function is the function space’s way of measuring how 

large a function is. It is common (though not universal) for the class X of functions to consist precisely of those 

functions for which the definition of the norm ‖ ‖  makes sense and is finite; thus the mere fact that a function 

f has membership in a function space X conveys some qualitative information about that function (it may imply 

some regularity, some decay, some boundedness, or some integrability on the function f ), while the norm ‖ ‖  

supplements this qualitative information with a more quantitative measurement of the function (e.g. how regular 

is f? how much decay does f have? by which constant is f bounded? what is the integral of f?). Typically, we 

assumed that the function space X and its associated norm ‖ ‖  obey a certain number of axioms; for instance, a 

rather standard set of axioms is that X is a real or complex vector space, that the norm is non-degenerate 
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(‖ ‖   , for non-zero f), homogeneous of degree 1, and obeys the triangle inequality ‖   ‖  ‖ ‖  
‖ ‖ ; furthermore, the space X when viewed using the metric d(f,g) = ‖   ‖  is a complete metric space 

[10]. Spaces satisfying all of these axioms are known as Banach spaces, and enjoy a number of good properties 

[4]. A majority (but certainly not all) of the standard function spaces are Banach spaces. More also, a Banach 

space which is also closed under multiplication is refers to as a Banach algebra. 

The concept of functions of bounded variation has been well-known since Jordan gave the complete 

characterization of functions of bounded variation as a difference of two increasing functions in 1881. This class 

of functions immediately proved to be important in connection with the rectification of curves and with the 

Dirichlet’s theorem on convergence of Fourier series. Functions of bounded variation exhibit so many 

interesting properties that make them a suitable class of functions in a variety of contexts with wide applications 

in pure and applied mathematics [9]. 

Riesz in 1910 generalized the notion of Jordan and introduced the notion of bounded 

                   and showed that, for      , this class coincides with the class of functions 

absolutely continuous with the derivative in space   . On the other hand, this notion of bounded             

was generalized by Medvedev in 1953 who introduce the concept of bounded             in the sense of 

Riesz and also showed a Riesz’s Lemma for this class of functions [7]. 

Korenblum in 1975 introduce the nation of bounded             variation. This concept differs 

from others due to the fact that it introduces a distribution function   that measures intervals in the domain of 

the function and not in the range [1]. In 1985, Cyphert and Kelingos showed that a function   is of bounded 

            if it can be written as the difference of two  -decreasing functions. In 2010, Park introduced the 

notion of functions of                      on a compact interval [   ]   which is a combination of 

concept of bounded             and bounded             in the sense of Schramm [8], and in 2010 Aziz 

et al. showed that the space of bounded             satisfies Matkowski’s weak condition [16]. 

Recently, Castillo et al. introduce the notion of bounded             in the sense of Riesz-

Korenblum, which is a combination of the notions of bounded             in the sense of Riesz and bounded 

            in sense of Korenblum. More also, Castillo et al. in 2013 introduce the concept of bounded 

             in the sense of Riesz-Korenblum, which is a combination of the notions of bounded   
          in the sense of Riesz and bounded             in the sense of Korenblum, and proved some 

properties of this class of functions and it relation with the functions of bounded             and bounded 

            in the sense of Riesz. The same study proved that the space generated by this class of functions 

is a Banach space with a given norm and that the uniformly bounded composition operator satisfies 

Matkowski’s weak condition in this space [9]. 

 
II. Preliminary 

In this section we present some definitions and preliminary results related to the notion of functions of 

bounded    - variation in the sense of Riesz – Korenblum. 

Definition 1.  A partition of an interval [a, b]: A partition say P of an interval [a, b] is a set of points {x1,x2,…,xn} 

such that P={a=x1,x2,…,xn = b} [14]. 

Definition 2. Variation of a function ƒ: Let ƒ : [a ,b] → R be a function and let [c,d] be any closed interval of [a, 

b] if the set S = {|             |} such that {        }                   [   ], is bounded then, the 

variation of ƒ on [c, d] is defined to be V(ƒ,[c, d]) = sup S. If S is unbounded then, the variation of ƒ is said to be 

∞. A function ƒ is of bounded variation on [c, d], if V(ƒ,[c, d]) is finite [13], [14]. 

Definition 3. Let   [   ]    be a function. For each partition                      of the 

interval [a, b], we define 

    [   ]     
 

∑|             |

 

   

  

Where the supremum is taken over all partitions   of the interval [   ] [9]. If     [   ]   , we say that   

has bounded variation. Denoted by   [   ] the collection of all functions of bounded variation on [   ]. 
The following are some well – known properties of the space of functions of bounded   [   ]. 
(1) If the function   is monotone, then,     [   ]  |         |. 
(2) If     [   ], then   is bounded on [   ]. 
(3) A function   is of bounded variation of an interval [   ] if and only if it can be decomposed as a difference 

of increasing functions. 

(4) Every function of bounded variation has left- and right- hand limits at each point of its domain. 

(5)   [   ] is a Banach space endowed with the norm 

‖ ‖   |    |      [   ]      [   ] 
Definition 4. A function   [     [     is said to be a   - function if it satisfies the following properties. 
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(a)   is continuous on [    . 

  )  (t) = 0 if and only if t = 0. 

(c)   is strictly increasing. 

(d)             . 

Definition 5. (conditions    and   ). Let   be a convex   – function, then 

(a)   satisfies the condition    if                 . 

      satisfies the condition       if there is C > 0,      such that  

                     
Definition 6. A normed algebra A is a norm space which is an algebra such that for all       

‖  ‖  ‖ ‖‖ ‖ 

Definition 7. Let   be a   – function and   [   ]    be a function. For each partition            
          of the interval [a, b], we define 

  
       

    [   ]     
 

∑ (
|             |

|       |
)

 

   

|       |  

where the supremum is taken over all partitions   of the interval [   ] [9]. If   
    [   ]   , we say that   

has bounded   – variation in the sense of Riesz. Denoted by   
 [   ] the collection of all functions of bounded 

  – variation in the sense of Riesz on [   ]. This set of functions share similar properties with   [   ]. In fact 

if   is convex then,   
 [   ]    [   ] and if                  , then    

 [   ]    [   ]. 

Definition 8. A function   [   ]  [   ] is said to be a            if it satisfies the following properties: 

(a)   is continuous with                  . 

(b)   is concave (down), increasing, and 

(c)                 . (Castillo, 203) 

The set of all            will be denoted by  . Note that every            is sub-additive; that is, 

                           [   ] 
Then, for all partitions                  of [   ], we have 

        (∑
       

   

 

   

)  ∑ (
       

   
)  

 

   

 

Korenblum introduces the definition of bounded             as follows: 

Definition 9. A real value function   on [   ] is said to be of bounded   – variation, if 

           [   ]     
 

∑ |             |
 
   

∑                   
   

    

Where the supremum is taken over all partitions   of the interval [   ]. We denote by   [   ] the collection of 

all functions of bounded   – variation on [   ].  
 Some properties of the space    [   ] were exposed by [3]. 

(1) if the function   is monotone, then       [   ]  |         |. 
(2) if      [   ], then   is bounded on [   ]. 

(3) if     [   ], then if      [   ]; that is if   [   ]     [   ]. 
(4) A function   has bounded             in an interval [   ] if and only if it can be decomposed as a 

difference of              functions. 

(5) Every function of bounded             has left- and right-hand limits at each point of its domain. 

(6)     [   ] is Banach space endowed with the norm 

‖ ‖  |    |       [   ]       [   ] [  ]  
Definition 10. Let   be a   – function,      and   [   ]    be a function. For each partition   
                   of the interval [a, b], we define 

   
        

    [   ]     
 

∑   |             | |       | |       |
 
   

∑                   
   

  

Where the supremum is taken over all partitions   of the interval [   ]. If    
    [   ]   , we say that   

has bounded    – variation in the sense of Riesz – Korenblum. Denoted by   
 [   ] the collection of all 

functions of bounded    – variation in the sense of Riesz - Korenblum on [   ]. 
Proposition 11. Let   be a   – function,      and   [   ]    be a function, Then 

(a) The function    
         

 [   ]    is an even function, that is,    
        

     . 

(b)    
       if and only if   is a constant. 
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III. Main Results 
In this section we present the principal results of this paper. Next, let   be a convex function such that 

  satisfies definition 5(a), that is,                 . 

Remark 1. From proposition 11(a) and (b), it follows that    
    [   ]  is a symmetric and convex subset of 

the linear space X consisting of all functions   [   ]   . Then the linear space 〈   
    [   ] 〉 generated by 

   
    [   ]  may be written in the form 

〈   
    [   ] 〉  {                                 

    [   ] } denoted by    
 [   ]. 

Moreover, the set    {   [   ]         
 (

 

 
)                } is absorbent and balance, so the 

Minkowski’s functional associated to the set   is a semi-norm. 

Remark 2. Since the set {        
 (

 

 
)   } is nonempty therefore, the following definition has sense 

Definition 3. Let   be a convex   – function, and ‖ ‖          , be defined by the formula. ‖ ‖   

   {        
 (

 

 
)   }, with      

 [   ]  {     
 [   ]         }. Then,    

 [   ] has Banach space 

structure with respect to the norm 

‖ ‖  
  |    |     {        

 (
 

 
)   }           

 [   ] [  ]  

Theorem 4. Let   be a convex   – function, then,     
 [   ] ‖ ‖   , where the functional ‖ ‖   

    
 [   ]    defined by ‖ ‖   |    |       ,      

 [   ] is a normed space, where    is the 

Minkowski functional associated to the set  . Proof (see [9]). 

Theorem 5. Let   be a convex   – function, such that   - function such that   satisfies the condition   , then, 

the space     
 [   ] ‖ ‖    is Banach space. Proof (see [9]). 

 

IV. The Banach Algebra    
 [   ] 

The techniques and approach used in this section are similar to those used by [16] and [15] 

The first main result of this paper is contained in the following theorem. 

Theorem 1. The space     
  [   ]    ‖ ‖    is Banach algebra. In addition, 

‖  ‖   ‖ ‖   ‖ ‖               
  [   ]   . 

Proof: Let        
  [   ]    be given, for any natural number   and any collection of non-overlapping 

subintervals                 , by definition we have 

   
         

     [   ]      
∑   |  (  )   (    )| |       | |       | 
   

∑                   
   

  

                     
∑   | (  ) (  )  (    ) (    )| |       | |       | 
   

∑                   
   

  

           
∑   | (  ) (  )  (  ) (    )  (  ) (    )  (    ) (    )| |       | |       | 
   

∑                   
   

             

                      
∑   | (  )  (  )  (    )   (    )  (  )  (    ) | |       | |       | 
   

∑                   
   

  

                     
∑   | (  )  (  )  (    ) | |       | |       | 
   

∑                   
   

   

∑   |                      | |       | |       |
 
   

∑                   
   

 

       ‖ ‖    
    [   ]  ‖ ‖    

    [   ]  

Where ‖ ‖                                          . Hence, by definition 9(6) we have 

‖  ‖  
  ‖  ‖     

       

               ‖ ‖ ‖ ‖  ‖ ‖    
    [   ]  ‖ ‖    

    [   ]   

               ‖ ‖ ‖ ‖  ‖ ‖    
    [   ]  ‖ ‖    

    [   ]     
       

      

                ‖ ‖     
      ‖ ‖    

       

               ‖ ‖  
 ‖ ‖  

 . 

The proof is complete. 

 

V. The Composition Operator On    
 [   ] 

The main objective of this section is to give a brief characterization of the composition (Nemystkii) 

operator on the space    
 [   ] of functions of bounded    - variation in the sense of Riesz-Korenblum. 

Theorem 1. Let     be a convex function, satisfying the condition    and let     [   ]   [   ] be the 

composition operator generated by the function   [   ]      and defined by the formula          
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            for    [   ]    [   ]. If   map    
  [   ]    into itself and is globally Lipschitzian, then, the 

following condition is satisfied. 

|               |   |     |       [   ]                 
Proof; Notice that the approach used here is similar to that from [16]. Suppose for any arbitrarily fixed       
   , let us put 

     {

                    
   

   
            

                     

 

Observe that             and is obviously Lipschitzian. 

Now, since       
  [   ]       

  [   ]    is Lipschitzian, there exist a constant     such that 

‖       ‖ 
   ‖     ‖   

                
  [   ]     

The definition of norm ‖ ‖   
  implies that              ‖     ‖   

 , now from lemma 4.1 of [16] we 

infer that if ‖     ‖   
   , then the last inequality can b equivalently written as 

   
 (

       

 ‖     ‖   
 
)    

From the definitions of the operators    
  and   we deduce that for all                             

      we have that 

 (
‖                                 ‖

 ‖     ‖   
 ‖   ‖

)‖   ‖    

Hence, by taking the inverse function we get 

| (       )   (       )                      | 

  ‖     ‖   
 ‖   ‖    ‖   ‖  

By critical examination of the four possible cases                                       
                                                           by [9] gives 

‖     ‖   
              |     |

|   |    
 

|   | 
, hence the result follows from the last inequality above. 

 
VI. Conclusion 

At the beginning of the paper we followed the laid down steps by Castillo [9] and other authors in the 

references to introduced the notion of bounded    - variation in the sense of Riesz-Korenblum. This is a 

combination of the notions of bounded   - variation in the sense of Riesz and bounded   - variation in the sense 

of Korenblum. We further introduced a norm such that the space generated by this class of functions is Banach 

algebra. The problems are readily side-stepped by restricting attention to functions of bounded    – variation in 

the sense of Riesz-Korenblum. The submultiplicativity of the norm is obtained and characterization of the 

composition operator briefly demonstrated. However, other interesting aspects such as inclusion of the space 

   
  [   ]    into   [   ] were not touched because of time space. Thus, that may be an interesting task for 

our readers. 
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