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Abstract: This paper investigates and discusses the method of dynamic programming in solving Bolza’s cost 

form of Linear Quadratic Regulator Problems (LQRP). It is the desire of the authors of this paper to experiment 

numerically the solution of this class of problem using dynamic programming to solve for the optimal controls 

and the trajectories compared with other numerical methods with a view to further improving the results. The 

method uses the principle of optimality to reduce mathematically the number of calculations required to 

determine the optimal control law as well as the corresponding optimal cost functional.  

Keywords: Continuous-Time Linear Regulator Problem, Optimal Control, Discretization and Dynamic 

Programming.  

 

I. Introduction 
 The performance measure to be minimized is a continuous-time linear quadratic regulator problem 

considered by [2] and [4] as Bolza problem: 

Problem (P1): 
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         1.1 

Subject to the differential equation  

 ̇                                                1.2 

where H and      are real symmetric positive semi-definite     matries.       is a real symmetric positive 

definite     matrix, the initial time and the final time,     are specified.      is an n-dimensional state vector, 

     is the m-dimensional plant control input vector.               are not constrained by any boundaries. 

        are specified constants which are not necessarily positive. If H = 0, (1.1) is called a Lagrange problem, 

but if Q(t) and R(t) are both zero matrices, it is called a Mayer problem. The linear plant dynamics and quadratic 

performance criteria (1.1) and (1.2) are referred to as linear regulator problem. 

 According to [3], before the numerical procedure of dynamic programming can be applied, the state 

equation dynamic, (1.2), must be approximated by a difference equation, and the integral in the performance 

measure must be approximated by a summation. This can be done most conveniently by dividing the time 

interval           into N equal increments,    . Then, from (1.2), we have 

 
            

  
                            1.3 

                                     
          [        ]                       1.4 

Here, it will be assumed that    is small enough so that the control signal can be approximated by a piecewise-

constant function that changes only at the instants 

                                            1.5 

thus,  

                   1.6 

Putting (1.6) for t in (1.4), we obtain 

           [          ]                                         1.7 

where         is referred to as the kth value of x and is denoted by      .  
With this condition, the system difference equation (1.7) can now be written as: 

       [        ]                       1.8 

In a similar way, the performance measure, (1.1), becomes 
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On applying the same condition as in (1.8) to (1.11), we obtain   
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       + (                           ) + (                            )  

        + …                                       ]                  1.12 

  Then, (1.12) can now be written using summative convention as: 

   
 

 
           

 

 
  ∑ [   

                               ]               1.13 

 From the above, (1.13) and (1.8) is the discrete-time counterpart form of the state and performance 

measure of the continuous-time linear regulator problem (1.1) and (1.2) respectively. This will lead us to 

generating a recurrence relation for the dynamic programming in the next section.  

 

II. Recurrence Relation of Dynamic Programming for LRP 
 Haven’t been able to change the continuous-time linear regulator problem (1.1) and (1.2) into discrete-

time linear regulator plant described by the n-dimensional equation 

         [        ]                                        2.1  

                                 2.2 

At time k, we are left with finding the optimal control            that minimizes the performance measure  
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                               ]        2.3 

where   and      are real symmetric positive semi definite matrices,      is a real symmetric positive definite 

matrix, and N is a fixed integer         
  The corresponding Hamiltonian is  

   
 

 
            

 

 
              

 

 
           

     [(      )             ]          2.4  

where the matrices      and      are functions of the stage    The weighting matrices      and      
represent the individual component weights on the state and control respectively over the sampling period and 

for most problems of interest, the sampling interval is constant. Without loss of generality and for sake of 

notational simplification, we assume that the matrices A, B, Q, and R are constant and begin by defining  

     (    )  
 

 
                   2.5 

where       is the cost of reaching the final state value      . Next, we define  

                        
 

 
[                     

                                          ].  2.6 

On putting (2.5) in (2.6), we obtain  

         (             )   
 

 
[                    

                                    (    )]   2.7 

which is the cost of operation during the interval                It must be noted that,        is 

dependent only on                    Since      is related to                        through the 

state (2.1), so we write  

        (             )   
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The optimal cost is then 
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Since the optimal choice of        will depend on         so we denote the minimizing control by 

                  The cost of operation over last two intervals is then given by  
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where again we have used the dependence of      on         and          
As before, we observe that        is the cost of a two-stage process with initial state          The optimal 

policy during the last two intervals is found from  
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 Going by the principle of optimality, for this two-stage process, whenever the initial state        

and initial decision        must be optimal with respect to the value of        that results from 

application of       ; therefore, 
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Also, since        is related to                  by the state (2.1), then (2.13) depends only on 
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By considering the cost of operation over the final three stages, a three–stage process with initial state       , 

we can follow exactly the same reasoning which led to (2.14) to obtain  
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Continuing backward in this manner, we obtain for a k-stage process the result  

      
 (      )                    {

 

 
           

 

 
  ∑                                 

     

}             2.16 

And on applying the optimality principle to (2.16), it gives  

       
 (      )           
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 ([          ]                     )

}      2.17 

The equation (2.17) is the recurrence relation that we set out to obtain.   

 With the knowledge of            
   the optimal cost for a (k-1)-stage policy,           

  can be generated 

which is the optimal cost for a k-stage policy. And to begin the process, one simply starts with a zero-stage 

process and generate      
      . Next, the optimal cost can be found for a one-stage process by using     

  and 

(2.17) and so on in which, beginning with a zero- stage process corresponds to starting at the terminal state and 

starting at the final time in the control.  

 

III. Computational Ingredients for the Discretized Linear Regulator Problems 
 In this section, we shall focus on the discrete system described by the state  

                                  3.1 

The states and controls are not constrained by any boundaries. The problem is to find an optimal policy  

            that minimizes the performance measure  
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where             are real symmetric positive semi definite     matrices.       is a real symmetric positive 

definite      matrix and N is a fixed integer greater than 0. (3.1) and (3.2) is the discrete counterpart of the 

continuous linear regulator problem considered in the section above. To simplify the notation in the derivation 

that follows, we assume that A, B, R, and Q are constant matrices. The approach we will take is to solve the 

functional equation (2.17).  

 To begin, [3] and [4] define 
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                  3.3 

where         The cost over the final interval is given by  

       (             )   
 

 
[                              

                       ]       3.4 

And the minimum cost is given as  

       
 (      )           {      (             )}         3.5 

Now, x    is related to        by the state equation, so 

       
 (      )           {

 

 
[                              ] 
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Also by [1] and [3], it is assumed that, the admissible controls are not bounded: therefore, to minimize         

with respect to        , we need to consider only those control values for which 
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            3.7 

On evaluating the indicated partial derivative gives 

                [               ]          3.8 

The control values that satisfy (3.8) may yield a minimum of          a maximum, or neither. To further 

investigate this, we form the matrix of second partials given as: 
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                            3.9 

By assumption, H [and hence P(0)] is a positive semi definite matrix, and R is a positive definite matrix. It can 

be shown that since P(0) is positive semi-definite, so is           This means that            is the sum of 

a positive definite matrix and a positive semi-definite matrix, and this implies that,           is positive 

definite. Solving (3.8) for the optimal control gives  

            [         ]                                           3.10 

Since           is positive definite, the indicated inverse is guaranteed to exist. Substituting (3.10) into 

(3.4) gives       
   which after the terms have been collected becomes 
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                                    3.11 

With 

       [         ]     [          ]                                3.12 

It is important to note that       
  is exactly the same form of      

 , which means that, when we continue the 

process one stage further backward, the results will have will be exactly the same form; i.e. 

             [         ]                                           3.13 

And 
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By induction, for the kth stage of the general time-varying case, the same derivation gives 
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                                 3.16 

 Another important result of the derivation is that, the minimum cost for an N-stage process with initial 

state    is given by  

     
       

 

 
  

       ,                           3.17 

which follows directly from the definition of          By implication, it means that, storage of the        

matrices for          provides us with a means of determining the minimum costs for processes from 1 to 

N stages.  

  

IV. Computational Procedure for Discrete Linear Regulator Problem 
Step 1: Compute the optimal cost functional at the final stage, k = 0, with N specified using the relation: 

     
 (    )  

 

 
                                4.1a 

 where        .                    4.1b 

Step 2:  Compute the optimal cost law at k = 1, 2… Nth stages from the final stage using the relation: 

                                          4.1c 

where the feedback gains 

          [                          ]                         4.1d 

Step 3: Update the value of                      stages from the final stage with 

                                                                  4.1e 

where                                            4.1f 

Step 4: If      , then stop and update the state variable with  

                                          4.1g 

using the initial state variable value          and work backward until       . Else, go back to Step 2 

through 4 until     .  

Remark: It must be noted that, the minimum cost for an N-stage process with initial state    is given by  

     
       

 

 
  

                          4.1h 

 

V. Computational Results 
 In testing the efficiency and robustness of Dynamic Programming method in solving LQRP, the 

following problems were considered: 

Problem (P2): Determine the optimal control law that will cause the linear discrete system  
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Problem (P3): Determine the optimal control law that will cause the linear discrete system  
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Problem (P4):  The first order linear system 

   ̇             

  ̇                               
is to be controlled to minimize the performance measure 
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). The admissible state and control values 

are not constrained by any boundaries. Find the optimal control law using Dynamic Programming.  
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VI. Conclusion 
 In this paper, we applied the dynamic programming method to solving discretized Bolza’s cost form of 

Linear Quadratic Regulator Problems (LQRP). It has been observed that, the optimal control at each stage is a 

linear combination of the states; therefore, the optimal policy is linear state variable feedback.  

 Also, the minimum cost for an N-stage process with initial state    is given by                       

     
       

 

 
  

         which follows directly from the definition of        . This means that, storage of 

the        matrices for           provides us with a means of determining the minimum costs for 

processes from        stages. In each of the problems considered, we have taken N = 10 and the optimal cost 

law and the optimal cost functional at each stage                   
          respectively are reported in 

the tables 1 to 3.  
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Table 1: Computational Results for Solution of Problem (P2) 
                                                   

          

0 0 0 2 1 0.089254831 2271.267178 

1 -0.67072573e-3 -0.62643319e-1 2.021301552 -0.192481813 0.130476228 2238.320038 

2 -0.69124457e-2 -0.14696912 1.997972009 -0.760230483 0.273906332 825.0076642 

3 -0.1892190e-1 -0.43060243 1.955233517 -0.954241264 0.631634837 306.3492589 

4 -0.29116282e-1 -1.23398267 1.90702315 -0.97242069 1.467881515 114.8623145 

5 -0.1649150e-1 -3.05856165 1.856803457 -1.036175256 3.138584426 42.96820265 

6 -0.14099478e-1 -5.68525413 1.800206082 -1.232024452 5.501570713 16.06857392 

7 -0.286160828 -7.28263538 1.731027674 -1.542982945 6.389880003 6.020809844 

8 -1.264155036 -6.79563955 1.644181347 -1.941031197 2.640505972 2.274632176 

9 -3.45491054 -5.51121792 1.535640972 -2.099285678 -5.922606819 0.824886132 

10 -7.81819049 -5.43936856 1.418666427 -2.591791457 -21.07572936 0.419510988 

 

Table 2: Computational Results for Solution of Problem (P3) 
                                                   

          

0 0 0 1 -1 0.070179618 3.811009052e15 

1 0.97674419 1.95348837 -1 0.67041752 -0.114657122 8.094809459e13 

2 0.66899391 1.32295023 0.67041752 -0.439874698 0.092280721 1.903917291e11 

3 0.67985926 1.17533354 -0.439874698 0.282059946 -0.052568104 550347617.9 

4 0.87410267 1.32525671 0.282059946 -0.175327656 0.041902617 20795519.778 

5 0.95490138 1.37591297 -0.175327656 0.668202884 0.75196846 16880064.79 

6 0.97701187 1.36936918 0.668202884 -0.409109652 0.035487626 2728.666113 

7 0.98581874 1.35628707 -0.409109652 0.191919037 -0.051082462 57.03464117 

8 0.99034065 1.34405007 0.191919037 -0.027296526 0.07272807 29.17652412 

9 0.99298524 1.33341629 -0.027296526 -0.045045264 -0.099039658 0.193181275 

10 0.99466828 1.32450763 -0.045045264 0.002729932 -0.32958248 0.2089105783e-2 
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Table 3: Computational Results for Solution of Problem (P4) 
                                                   

          

0 0 0 2 -1 1 43271.260173 

1 2.270670566 -0.270670566 1.135335283 -0.135335283 0.927067056 32538.125038 

2 1.048171086 1.347305166 0.524085543 -0.253414473 0.783677455 928.0076642 

3 1.019904468 0.170001406 0.509952234 0.0859997037 0.688309568 372.3190581 

4 1.287519274 0.066426266 0.437596376 0.0332131339 0.612835984 201.83623214 

5 1.293700636 -0.020839452 0.364685035 -0.010419726 0.685090339 74.96320165 

6 1.314568066 0.4477956125e-2 0.165728403 0.223897806e-2 0.616133509 28.41065792 

7 1.078367745 0.2783677485e-2 0.783677455e-1 0.178367745e-2 -1.583677455 3.2080401845 

8 0.968309568 0.6883095681e-3 0.238130956e-2 0.968530956e-3 -2.690130956 1.254612176 

9 0.723671455 0.1283677455e-3 0.478536707e-3 0.783677455e-3 -2.951712763 0.682981613 

10 0.658830956 0.2685839568e-4 0.168530956e-3 0.703309568e-3 -3.742916948 0.261939258e-2 

 


