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Abstract: This paper investigates and discusses modification on the gradient of continuous function input 
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Keywords: Optimal Control, Control Operator, Conjugate Gradient Method and Extended Conjugate Gradient 

Method. 

 

I. Introduction 
One of the commonly used technique for solving systems of linear equations is Gaussian elimination. It 

is referred to as a “direct” method because it determines the solution in a fixed number of arithmetic operations 

that can be predicted in advance. “Iterative” methods, on the other hand, do not have fixed costs since the 

solution is obtained from a sequence of approximate solutions, and the algorithm is terminated when some 

measure of the error has been made adequately small. 

However, iterative methods are valuable tool for solving large systems of linear equations. They have 

several potential advantages over direct method. First, since the coefficient matrix need not be factored, there 

are no fill-in and loss of sparsely. Second, storage requirements are more often lower for iterative methods than 

for direct methods. In some cases, it may not be necessary to store the coefficient matrix at all. Third, if a good 

approximation to the coefficient matrix is available, and this approximation can be inverted at low cost, then an 

iterative method can take advantage of this information to obtain the solution more rapidly. This is not normally 

possible with a direct method. A great many iterative methods have been invented, but we will only consider 

one ofsuch: the ConjugateGradient Method (CGM). (Many of the other iterative methods are applied primarily 

in the solution of differential equations.) The ConjugateGradient Method is designed to solve 

               1.1 

In the case where the matrix A is symmetric and positive definite. It can be considered as a technique for solving 

the equivalent problem 

 

Problem (P1) 

Minimize f (x) = 
 

 
                 1.2 

The Conjugate Gradient Method (CGM) is a variant of the gradient method. In its simplest form, the gradient 

method uses the iterative scheme:   

                        1.3 

to generate a sequence {  }      
 of vectors which converge to the minimum of      . The parameter   appearing 

in (1.3) denotes the step length of the descent direction sequence. In particular, if F is a function on a Hilbert 

space ℋ such that in ℋ, F admits a Taylor series expansion 

      =     〈   〉ℋ  
 

 
〈    〉ℋ        1.4 

where a,   ϵ ℋ and is a positive definite, symmetric, linear operator, then it can be shown by [4] that   

possesses a unique minimum   say in ℋ, and that  

       = 0. The CGM algorithm for iteratively locating the minimum     of       in ℋ as described by [4] is as 

follows:               

Step 1: Guess the first element    ϵ ℋ and compute the remaining members of the sequence with the aid of the 

formulae in the steps 2 through 6. 

Step 2: Compute the descent direction                1.5a 

Step 3:   Set                    ; where    = 
〈      〉ℋ

〈      〉ℋ
      1.5b 

Step 4: Compute                              1.5c 
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Step 5: Set                 ;     
〈          〉ℋ

〈      〉ℋ
       1.5d 

Step 6: If         for some i, then, terminate the sequence; else set i = i + 1 and go to step 3. 

 In the iterative steps 2 through 6 above,     denotes the descent direction at i-th step of the algorithm, 

  , is the step length of the descent sequence  {  } and     denotes the gradient of F at   . Steps 3, 4 and 5 of the 

algorithm reveal the crucial role of the linear operator Q in determining the step length of the descent sequence 

and also in generating a conjugate direction of search. Since the aim of this paper is investigating the general 

method for finding the gradient of a function, it is pertinent to discuss  the modified gradient technique for the 

cases of a continuous function input as it applies to the CGM in the next section. 

 

II. Continuous Function Input Gradient 
We make the specific assumption that  , the space in which the minimum of the cost functional is 

sought, is the space of continuous functions over the time interval [     ]  We have then 

             [     ]          2.1 

where       is continuous over [     ]  We now seek the gradient of the cost functional in such a space of 

functions. Our approach is by 

 
 

  
 [     ]      〈    〉 

  = 〈   ( (    ))  
 

  
       〉       2.2 

which requires the evaluation of
  

  
 .  

Based on this, we consider 

 ̇                                 2.3 

where now        and        a Hilbert space.        is a mapping from                  , the state at the 

initial time,     is assumed given as the fixed vector C.  is called the state of the system and u, the control input. 

On integrating (2.3), we obtained 

              ∫         
 

  
         2.4 

We look inturn at the final state for an input       where z is thesame form as u of (2.1), that is,                   

          [     ]  Thus again from (2.3) 

 (       )         ∫             
 

  
        2.5 

On differentiating (2.5) with respect to  , we have 

 
 

  
 (       )        

 

  
             ∫ {       

 

  
                  }  

  
  

         2.6  

where x(t, u) is as given by (2.4) and           are matrix and vector, respectively, whose elements are given by  

              
   

  
                                 2.7 

            
   

  
                                2.8 

The arguments x and u, of f have are functions of time given by (2.4) and (2.1) respectively.    is the ith 

component of the vector value function f. 

For a more tractable expression, we eliminate some of the arguments in (2.6), to get  
 

  
 (    )   

 

  
      ∫ {  

 

  
             }  

  
  

      .      2.9 

It can be seen that  
  

  
, which is needed to eliminate the gradient by (2.2), is the solution to the integral of (2.9) 

must hold for arbitrary       since    has been unspecified so far. Thus, by letting      in (2.9) and 

differentiating with respect to it, we get the differential equation 

  
 

  
        

 

  
      ∫ {  

 

  
             }  

 

  
  

 
 

  

 

  
        

 

  

 

  
      

 

  
∫ {  

 

  
             }  

 

  
 

 

  

 

  
          

 

  
                     2.10 

 which  
  

  
  must satisfy. 

A standard linear, time varying differential equation of the form 

 ̇                       2.11 

for which the solution is considered as  

                    ∫                 
 

  
       2.12 

And applying the solution (2.12) to (2.10) gives 
 

  
               

 

  
       ∫               

 

  
       2.13 
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where   is the function of t and    that satisfies  
 

  
                                       2.14 

where  I is the     identity matrix.  

Then we substitute (2.13) into ( 2.2) to evaluate the desired gradient thus 
 

  
 [    ]     〈   ( (    ))         

 

  
      ∫               

 

  
〉    2.15 

Since          a constant, hence 
 

  
        then, 

 
 

  
 [     ]        〈      〉 

   = 〈   ( (    ))  ∫               
 

  
〉  

   = ∫ 〈  
              (    )     〉  

  
  

      2.16 

Let                    (    )         2.17 

Putting (2.17) in (2.16), we obtain 

〈      〉  ∫   
           

  
  

.         2.18 

The integration of the right hand side of (2.18), which is the scalar product on the spaceof functions under 

consideration, shows the gradient of the cost functional for this case to be 

  (    )    
     ,         [     ]         2.19 

which is the desired result. Equation (2.19) is the gradient required to do CGM of the cost functional in the 

space of input control functions considered here. 

Computation of the gradient as in (2.19) can be greatly simplified by recognizing that   ( ) as given by (2.17) 

satisfies 

 ̇        
                 (  )        (    )       2.20 

The system of differential equations in (2.20) is called the adjoint system to the system (2.3). Applicability of 

the CGM algorithm thus rests heavily on the explicit knowledge of the operator Q based on the introduction of 

the modified gradient technique to the CGM. 

 

III. The Extended Conjugate Gradient Method (ECGM) 
According to [2], an extended conjugate gradient method (ECGM) adopts the CGM to obtain the 

solution of a scalar, linear, optimal control problem of the form: 

Problem (P2) 

        ∫ {             }
 

 
           3.1 

Subject to the constraint 

  ̇    =                0            3.2

          

where A, B, C and D are specified constants such that        ;    and T are given,  ̇    denotes the 

derivative of the state vector,     , with respect to time and     is the control vector. As conventional with 

penalty function techniques, (3.1) and (3.2) may equivalently be written  

        ∫ {                   ̇                     }
 

 
  ,       3.3 

where  , is the penalty parameter and       ̇                      is the penalty term.  The operator, Q, was 

developed by [6] and was later improved upon by [1], which is related to the problem in the sense that:   

〈    〉ℋ          ∫ {                   ̇                   }
 

 
  ,  

where ℋ is a suitably chosen Hilbert space. The operator Q is then utilized in the iterative procedure of the 

CGM in order to arrive at a solution of the problem (P2). Generally, according to [1], for discrete type 

optimization problems which satisfy the hypotheses on 

      =     〈   〉ℋ  
 

 
〈    〉ℋ   

The linear operator Q is readily determined (to see [4] pp. 51 - 53); and such problems enjoy the beauty of the 

CGM as a computational scheme since the CGM exhibits quadratic convergence and requires only a little more 

computation per iteration. 

According to [6], the operator   is such that 

 (Q      [
      

      
] [

    
    

]  [
          

          

         

         
]     3.4 

with the composite operators                      given by  

          =   [ ̇          ]    (t) +  ∫ [ ̇          ]           
 

 
 

         ∫ [               ̇   ]
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[               ̇   ]         

       

       
{               ̇    

                  [ ̇          ]    ∫ [ ̇          ]    
 

 
         

        +∫ [
           

    ̇   
]

 

 
              [               ̇   ]       }, 0          3.5 

          =             ̇(t), 0                3.6 

          =                  ∫                 
 

 
   ∫                  

 

 
                 

    
       

       
{                         ∫                 

 

 
   ∫                  

 

 
 

                  }, 0             3.7 

          =               , 0             3.8 

 The proof of the above results (3.5) to (3.8) can readily be found in [6]. 

Since our objective is to solve problems of the form (3.1) and (3.2) introducing the modified gradient techniques 

to the ECGM, then, there is need to discuss the modified gradient techniques as it applies to an ECGM 

algorithmin what follows: 

 

IV. ECGM Algorithm 
The ECGM algorithm for iteratively locating the minimum    of       in ℋ as described by [7] and [8] 

is as follows 

Step 1: Guess the first element       ϵ ℋ and compute the remaining members of the sequence with the aid of 

the formulae in the steps 2 through 6. 

Step 2: Compute the descent direction              

                            4.1a 

Step 3:   Set                     ; where      
〈            〉ℋ

〈             〉ℋ
 

 Set                       ; where      = 
〈            〉ℋ

〈             〉ℋ
      4.1b 

Step 4: Compute                                

 Compute                                     4.1c 

Step 5: Set                           ;       
〈              〉ℋ

〈          〉ℋ
 

                               ;       
〈              〉ℋ

〈          〉ℋ
     4.1d 

Step 6: If          for some i, then, terminate the sequence; else set i = i + 1 and go to step 3. 

 In the iterative steps 2 through 6 above,               denote the descent directions at ith step of the 

algorithm,              , are the step lengths of the descent sequences{  } and {  }                 denote the 

gradients of   at           respectively. Steps 3, 4 and 5 of the algorithm reveal the crucial role of the linear 

operator Q in determining the step lengths of the descent sequences and also in generating conjugate directions 

of search. 

V. Computational Results 
The following problems were evaluated using the ECGM algorithm thus: 

Problem (P3) 

Find the optimal control which gives an extremum value of the functional 

 J  = ∫      
 

 
    

Subject to the state differential equation 

   ̇         

   ̇       

                              is not specified. 

 

Problem (P4) 

What is the optimal trajectory and control for the system 

 ̇    =            0     ,  

                        that minimizes the performance measure 

 J  =  ∫ {           }
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Problem (5) 

         ∫ {           }
 

 
    

Subject to the constraint 

  ̇    = 3            0     , 

         

Conclusion 

Computationally, the resulting algorithm from the introduction of the gradient modification to the ECGM were 

tested on a number of optimal control problems with the penalty parameter,        the results obtained in each 

cases were presented in Tables 1 to 3. Our results show improved convergence profile over the classical 

methods considering the analytical solution of each of the problems under review in this paper.  
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Table 1: Solution of Problem (P3) 

Iteration             u(t) 

0 1.0 1.0 -6.0 

1 1.084680787 0.200711485 -5.138692382 

2 1.080057317 -0.283180894 -4.530819237 

3 1.030044608 -0.707073274 -3.913879238 

4 0.940642661 -1.070965655 -3.003538923 

5 0.817851477 -1.374858035 -2.703289238 

6 0.667610545 -1.618750415 -2.138952363 

7 0.496103942 -1.802642795 -1.538292308 

8 0.309142496 -1.926535175 -0.938923187 

9 0.102754359 -1.890427555 -0.338923845 

 

Analytical Solution:                                                            

Table 2: Solution of Problem (P4) 

Iteration            
0 2.0 1.0 

1 1.7330480936 0.6067807621 

2 1.5208769341 0.3777519129 

3 0.9260250723 0.2358764292 

4 0.8623790085 0.0499097773 

5 0.8397009848 0.0290384055 

6 0.7931014220 -0.1990770602 

7 0.7659701924 -1.0482730595 

 

Analytical Solution:                                           
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Table 3: Solution of Problem (P5) 

Iteration            
0 3.0 2.0 

1 2.83554338 1.742165943 

2 1.528200439 1.475202917 

3 0.223892231 1.189145383 

4 0.140733082 0.487161661 

5 0.60505448e-1 0.382902064 

6 0.38598343e-1 0.156341626 

7 0.16313756e-1 0.117387285 

8 0.10416489e-1 0.60505448e-1 

9 0.11872374e-2 0.10416489e-1 

10 0.7579272e-3 0.44013102e-2 

11 0.32026735e-3 0.28095923e-2 

12 0.86393787e-4 0.42685168e-2   

13 0.55152705e-4 0.19483751e-3 

14 0.23305251e-4 0.99064718e-4 

 

Analytical Solution:                                               

 

 


