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Abstract: This paper presents fast iterative algorithms for solution of PDEs arisen from minimization of 

multiplicative noise removal model [14]. This model may be regarded as an improved version of the Total 

Variation (TV) de-noising models. For the TV and the multiplicative noise removal models, their associated 

Euler-Lagrange equations are highly nonlinear Partial Differential Equations (PDEs). For this model a very 

slow explicit time marching method has been reported. The main contribution we present in this paper is the 

implementation of the fixed point, semi-implicit and additive operator splitting schemes which do not yield good 

results. Consequently a fast and efficient multi-grid method with AOS as smoother is developed. Numerical 

experiments are presented to show the good performance of the fast multi-grid algorithm. 

Key words. Synthetic  Aperture Radar (SAR), Total Variation (TV)-based noise reduction, AOS (Additive 

Operator Splitting), Multi-Grid (MG), BV-Bounded Variation. 

 

I. Introduction 
Image de-noising is an inverse problem encountered in a wide variety of image processing fields [10, 

21,14]. Multiplicative noise (speckle) is one of the more complex image noise. It is signal independent, non-

Gaussian and spatially dependent. It appears in various image processing applications e.g., in Synthetic Aperture 

Radar (SAR), Utrasound imaging or in connection with blur in electronic microscopy, single particle emission 

computed tomography (SPECT) and Positron Emission Tomography (PET). Many approaches have been 

proposed to tackle this problem. Among the famous ones are wavelets approaches, stochastic approaches, and 

variational approaches which is presented by Rudin, Osher and Fatemi (ROF) [16], it become evident that the 

variational approaches to the image de-noising problem can yield often excellent results. There exist several 

variational approaches concerned to multiplicative de-noising models. 

The first TV-based multiplicative noise removal model was introduced by Rudin etal (RLO-model) 
[15] which used a constrained optimization approach with two Lagrange multipliers. Multiplicative de-noising 

model (AA-model) with a fitting term obtained from a MAP (Maximum a Posteriori) 

was presented by Aubert and Aujol [6, 1]. Shi and Osher [16, 14] adopted the data term of the AA-model and 

replace the regularizer  and letting , they derived the strictly convex 

TV model (SO-model) [5].Similarly with SO-model, Bioucas and Figueiredo converted the multiplicative model 

into an additive one by taking logarithms and introduced Bayesian type variational model[14].Steidl and Teuber 

[14, 25] presented a variational model consisting of the 1-divergence as data fitting term and the TV-semi-norm 

as regularizer. A variational model involving curve let coefficients for cleaning multiplicative Gamma noise was 

introduced in [14]. 

 

II. Variational Model 
According to [14] by applying the Total Variational (TV) approach, a functional well adapted to the 

removing of multiplicative noise is given by: 
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Where, the first term is the image fidelity term which measures the violation of the relation between ϕ 

and the observation f. The last two terms are the regularization terms, where  are regularization 

parameters. The formal Euler-Lagrange equation [14] for any solution of functional (1) is as follows. 
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Since , then the Euler-Lagrange equation of minimizing can be rewritten equivalently as: 
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Let   .Then equation (3) can be rewritten as 
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with the Neumann adiabatic condition along the boundary of the image domain. Notice that   , 

since . Equation (4) can be expressed in operator notation: 
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where   is the linear diffusion operator whose action on a function  is given by:  
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The fixed point iteration is then 
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Finite difference method [12, 7, 4], is used commonly for discretization of Partial Differential Equation (PDE). 

Equation (5) can be approximately computed by the first order accurate finite difference schemes described as 

follows [15, 14]. 
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Where, m (a, b) = (sign(a) + sign(b))/2, min(|a|, |b|). Here, we denote the space step size by h = 1, ϵ > 0. These 
schemes yield approximate form of equation (6). 
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The matrix operators L, are symmetric and positive definite and sparse. Following experimental results will 

illustrate the performance of the numerical scheme. 

 

III. Numerical Methods 
Explicitly time marching methods have been applied for solving TV-image models [19], due to their 

simplicity but as it are conditionally stable. Therefore, we use the semi-implicit and additive splitting which are 

unconditionally stable to solve equation (4) with an artificial time step Δt i.e the following problem: 
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with the Neumann adiabatic condition along the boundary of the image domain. Where: 

.The grid-point (i, j) I s located at 

), 1 ≤ i ≤ , 1 ≤ j ≤   



Fast Iterative Algorithms for Total Variation Based Multiplicative Noise Removal Model 

www.iosrjournals.org                                                            3 | Page 

The value of f at each grid (i, j) is denoted by .where as: ,  are the grid spacings in the 

x,y–directions. 

 

3.1.Semi-Implicit Scheme 

Refer to [3,20], at time  denote  an approximation of  

and using equation (4-12).we obtain the following linearized equation through semi-implicitness is given as: 
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Denoting the coefficients of  by  respectively. 

We get the following system of linear equations. 

    ij

n

ij

n

ij

n

ji

n

ji

n

ji

n

ji ftAAAAtAAAAt 
~

,,,
~

1 1

13

1

13

1

12

1

11,

1

,4321  
















 

 (14) 

Which may be solved by an iterative method as a direct solution can be expensive for images of large size. 

 

3.2 Additive Operator Scheme 

It is already stated that semi-implicit scheme is unconditionally stable but it is can allow large time 

steps. Its main drawback is the computational cost of the associated linear systems for large images. Hence, we 

need an iterative method which is unconditionally stable, time efficient and easy to implement to solve the 

PDEs. So we introduce the AOS scheme [3, 18], which provides an equally accurate and yet more efficient SI-

scheme by splitting the two dimensional spatial operator into two separate 1-dimensional space discretizations 

and then applying 1-dimensional SI-scheme in turns. Then two tri-diagonal systems are solved per iteration than 
a band five system. 

Following equation (12) we have 
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With the Neumann adiabatic condition along the boundary of the image domain. Where 
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After we solve the system of equations (17) in the x-direction, we then solve a similar system in the y-

direction before averaging the two solutions. In matrix notation the process can be written as 
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Where I is the identity matrix, and  for l = 1, 2 are tri-diagonal matrices derived from (18). 
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IV. Multi-Grid Method 
It is known that convergence rate is very slow when using standard numerical optimization techniques. 

Therefore, we introduce the multi-grid algorithm to solve this system. Also, we need an iterative solver that 

eliminates the high frequency components of the residual quickly and efficiently. Iterative algorithms with this 
property are called smoothers. In 

This paper, we introduce the Additive Operator Splitting method as smoother. Multi-Grid methods 

have been recently developed. It was first introduced by Brandt [2, 13, 11, 3, 22, 23, 8]. Unlike the conventional 

numerical schemes, the multi-grid algorithm can solve non-linear elliptic PDEs with non-constant coefficients 

with hardly any loss in efficiency. 

The equation (4) at grid point (i, j) is given as: 
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with the Neumann boundary conditions 

, . 

 

4.1.The choice of Smoothers and the overall Multi-Grid Algorithm 

Several iterative methods can be applied as smoothers for multi-grid scheme like fixed point iteration, 

JAC, and Gauss Seidal schemes etc. Here AOS is given as smoother which work well with the standard non-

linear multi-grid method [24]. 

4.1.1. Smoother  

Iterative solver that smooth the high frequency components of the residual quickly and  efficiently. 

Iterative algorithms with this property are called smoothers. For linear problems with smooth coefficients, it is 

well-known that Gauss-Seidel, Jacobi and SOR methods are good smoothers. For non-linear problems, however 

it is not an easy task to implement a good one. In this work, Additive Operator Splitting (AOS) has been used as 

smoother 

which yield our desired results in de-noising the images. 

 

4.1.2. The Full Approximation Scheme (Multi-Grid Method) 

System of non-linear equations is denoted by: 

         (20) 

Where  is non-linear operator and  are grid functions on an   grid  with grid 

spacing (h, k).The  cell centered grid by  which results from the standard coarsening of .If 

 is an approximation to the solution of equation (19) define the error in  by  and the 

residual by .By the use of coarse grid correction the error can be smoothed by the use 

of any iterative method.For multi-grid scheme we use the interpolation and restriction operators for transferring 

the grid functions between  and . Refer to [9, 17], we have 

4.1.3. Restriction 
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4.1.4. Interpolation 
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4.1.5. The Multi-Grid Algorithm 

To solve equation (19) our multi-grid algorithm which is known as Full Approximation Scheme (FAS) 

may be summarized as follows [3]. 

Algorithm-1 

Following multi-grid parameters may be applied: 

 Pre-smoothing steps on each level 

Post-smoothing steps on each level ℓ the multilevel grids cycles on each level (ℓ = 1 for V-cycling ℓ = 2 for 

W-cycling) here we take the V-cycle with ℓ = 1 

1. FAS Multi−grid cycle 

 ,,,,,ˆˆ
21

22 vviterfCFASCY hhh    

2. If Ω is the coarsest grid, then solve (20) using time marching technique of [3], and then stop. Else 
implement a smoother 

 

 ϕˆh ← Smoother ( , , ), ( Pre-smoothing step )  

3. Restriction 
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5. Interpolation                     
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V. Experimental Results 
In this paper, experiments are carried out on gray scale images of different sizes (pixels) and ranges 

from [0 127] to [0 2047] with multiplicative noise/speckle. Experimental results are given to demonstrate the 

performance of multi-grid with AOS (MG), with other numerical schemes likely, semi-implicit, fixed point and 

additive operator splitting (AOS) schemes.Figure1, shows test images for de-noising namely Problem1, 

Problem2 and Problem3. The de-noised images are shown in figure2, figure3, figure4 for visual comparison. 

Figure2 consists of problem1, which is de-noised by semi-implicit, fixed Point, additive operator splitting 

schemes, and multi-grid algorithms. Parameters used are . Figure3 shows problem2, 

restoration of image is made by semiimplicit method, fixed point iterative method, additive operator splitting 

scheme, and multi-grid algorithms with .Figure4 shows problem3, which is 

restored by semi-implicit, fixed Point, additive operator splitting scheme, and multi-grid algorithms 

with . In each case better performance of MG can be seen over other iterative 

schemes. In addition, from table1 one can see that multi-grid MG is more efficient and effective. It may be 

noted that for large images the multi-grid algorithm MG takes more time because for better de-noising results 

we apply large cycles of pre-smoothing and post-smoothing steps that is  . 

Furthermore, we gave the speed comparison of the four schemes which includes the number of iterations (It.) 

and the CPU time for the images of different sizes. Following abbreviations may be 

helpful for reading the given table which is given as under: 

• SIM: Semi-Implicit Scheme 

• FPIS: Fixed Point Iteration Scheme 
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• AOS: Additive Operator Splitting Scheme 

• MG: AOS based multi-grid. 

 

5.1. Test Images for De-noising 

Following are the test images which will be used for de-noising throughout in this work, which 

are assigned names as Problem1, Problem2 and Problem3. 
 

                             

 

   

 

 

 

 

(a) Problem1      (b) Problem2      (c) Problem3 

Figure.1 Test Images for de-noising 

 

             
 

  

 

 

 

 

(a)  Original image                (b)  Problem1              (c) It.=41,SIM 

 

       

 

 
 

 

 

 

(d) It.=85,FPIM           (e) It.=15,AOS                           s(f) It.=3,MG 

Figure.2 Problem1( ) denoised image by semi-implicit,fixed point,and additive 

operator splitting schemes with number of number of iterations=41,85,15 and multi-grid 

algorithm MG, with number of cycles=3,by choosing  

 

 

 

 

 

 

 

(a) Original Image  (b)  Problem2                 (c)  It.=14,SIM 
                                 

      

 

 

 

 

 

 

(d) It.=41,FPIM      (e) It.=7,AOS           (f) It.=2,MG 

Figure.3 Problem1( ) denoised image by demi-implicit,fixed point,and additive operator splitting 

schemes with number of number of iterations=41,85,15 and multi-grid algorithm MG, with number of 

cycles=2,by choosing  
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(a) Problem3     (b)  Problem3    (c)  It.=15,SIM 

 

             

 

 

 

 

   

 

(d)  It.=100,FPIM             (e) It.=8,AOS          (f) It.=2,MG 

Figure.4 Problem1( ) denoised image by demi-implicit,fixed point,and additive operator splitting 

schemes with number of number of iterations=15,100,8 and multi-grid algorithm MG, with number of 

cycles=2,by choosing  

 

Problem Size SIM FPIS AOS MG 

It. CPU It. CPU It. CPU It. CPU 

Problem1 
 

 

 

 

 
 

 

30 

41 
50 

59 

71 

4 

15 
81 

411 

586 

75 

85 
97 

109 

127 

15 

31 
85 

195 

730 

15 

15 
16 

19 

22 

2 

5 
24 

124 

390 

3 

3 
3 

3 

3 

2 

6 
23 

88 

271 

Problem2 
 

 

 

 

 
 

11 

14 

19 

25 

31 

2 

13 

87 

827 

2031 

28 

41 

55 

69 

87 

10 

154 

824 

1312 

2528 

7 

8 

8 

10 

13 

1 

3 

10 

37 

158 

2 

2 

2 

2 

2 

1 

2 

9 

32 

112 

Table.1 Comparison of semi-implicit   scheme, fixed point iteration scheme, additive operator scheme  and 

multi-grid  scheme for speckle images of Problem1 ( ) and Problem2 ( ) 

with CPU-time and number of iterations. 

 

VI. Peak Signal-to-Noise Ratio (PSNR) 
We measure the quality of the restored image by the peak signal-to-noise ratio (PSNR) defined by 

 

Where  is the original image,  is the restored image and  is the size of the image. 

Problem Size SIM FPIS AOS MG 

  PSNR PSNR PSNR PSNR 

Problem1 
 

19.05 14.54 19.37 19.69 
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Problem3 
 

 

24.03 20.23 25.67 25.89 

Table.2: It shows the Peak Signal-to-Noise Ratio (PSNR) results by semi-implicit, fixed point, additive operator 

splitting schemes and MG on gray level image of problem1 and problem3. From the table, we can see that the 

PSNR of the image restored by using MG is more than those restored by using the other schemes. 

 

VII. Conclusion 
In this paper, additive operator splitting method based multi-grid method for multiplicative 

noise/speckle suppression is presented. By applying the multi-grid algorithm, the technique has the advantage of 

speed of computation and effectiveness in de-noising the images over the standard iterative techniques of semi-

implicit scheme, fixed point iteration scheme, and additive operator scheme. Future work will address multi-grid 

methods for other variational models and alternative multilevel methods. Furthermore, it is intended to apply 

mesh-free methods for PDEs arisen from minimization of variational models. 
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