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This paper proposes an algorithm based on metaheuristic chemical reaction optimization and chaotic map for 

multiple-choice knapsack problem (MCKP). MCKP is a well-known NP-hard problem and it has a lot of 

applications in the real-world and theory. Chemical reaction optimization (CRO) is a new optimization 

approach mimic the chemical reaction process. In short, the CRO has been shown to be superior to many other 

approaches in both continues and discrete domain. The chaotic have strong points in generate random sequence 

when compare with traditional random function.The advantage of CRO for MCKP is that CRO used four types 

of search operator, chaotic map, and a penalty function to help the algorithm find optima solution fast and 

accuracy. The proposed method has shown better performance than the genetic algorithm in a large test set in 

solving MCKP. 
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I. Introduction 
Given 𝑚 classes 𝑁𝑖 = 1,… 𝑛𝑖 , 𝑖 = 1,… ,𝑚 of items to pack in some knapsack of capacity 𝑊. Each item 

𝑗 ∈ 𝑁𝑖  has a cost 𝑐𝑖𝑗  and a size 𝑤𝑖𝑗 , and the problem is to choose one item from each class such that the total cost 

is minimized without having the total size to exceed 𝑊. The multiple-choice knapsack problem (MCKP) may 

thus be formulated as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ‍𝑚
𝑖=1  ‍

𝑛𝑖
𝑗=1 𝑐𝑖𝑗 𝑥𝑖𝑗  (1.1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‍𝑚
𝑖=1  ‍

𝑛𝑖
𝑗=1 𝑤𝑖𝑗 𝑥𝑖𝑗 ≤ 𝑊, (1.2) 

  ‍
𝑛𝑖
𝑗=1 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,2, … ,𝑚}, (1.3) 

 𝑥𝑖𝑗 ∈  0,1 , ∀𝑖 = {1, … ,𝑚}, 𝑗 ∈ 𝑁𝑖 . (1.4) 

 

All coefficients 𝑐𝑖𝑗 , 𝑤𝑖𝑗 , and 𝑊 are positive numbers, and the classes 𝑁1 , … , 𝑁𝑚  are mutually disjoint. 

MCKP is known as an NP-hard (Non-deterministic Polynomial-time difficult) issue 
[5]

. The issue has a 

huge scope of utilizations: Capital Budgeting 
[1]

, Menu Planning 
[2]

, transportation programming 
[3]

, nonlinear 

backpack issues 
[1]

, deals asset designation 
[2]

, structure of data frameworks 
[4]

, and so forth. According to 

Marshall L. Fisher (2004), the MCKP additionally show up by Lagrange unwinding of a few number 

programming issues 
[18]

.  

Over the span of the latest four decades, researchers have proposed various approaches to manage 

unwind MCKP. Author can describe the methods for this issue into two classes to be explicit, right figurings and 

derived estimations. 

For exactly method, the branch-bound methodology is an including approach, which diminishes its 

request space by excepting unimaginable plans. According to M.E. Dyer et al., 1984, the branch-and-bound 

count and its varieties have been proposed 
[19], [1], [2]

. Dynamic programming count are proposed by (Krzysztof 

Dudzinski and Stanislaw Walukiewicz, 1987, David Pisinger, 1995) 
[20], [21]

. According to M.E.Dyer et al., 

(1995), two mutt figurings that join dynamic programming and branch-and-bound are proposed in 
[21], [22]

. 

Since MCKP is a NP-Hard issue. The precisely calculations have unpredictability time in exponential 

capacities. The heuristic calculation has leverage in finding surmised ideal in polynomial time. One of the 

notable heuristic calculations is GA 
[6]

. In spite of the fact that, GA is pioneer in explaining MCKP however it is 

still met a disadvantage that it gets stuck in nearby optima.  

The CRO, by outflanking many existing transformative calculations, it has effectively tackled 

numerous issues as of late. CRO has been effectively connected to the quadratic task issue 
[7]

, asset compelled 

venture booking issue 
[7]

, direct task issue in remote work systems 
[8]

, populace change issue in distributed 
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gushing 
[9]

, subjective radio range assignment issue 
[10]

, framework planning issue 
[11, 12]

, standard consistent 

benchmark work 
[13]

, stock portfolio choice issue 
[14]

, counterfeit neural system preparing 
[15]

, organize coding 

advancement 
[16]

, booking on Heterogeneous Computing Environments 
[17]

, 0-1 Knapsack issue what's more, to 

numerous different issues.  

In this examination, the CRO is made to enlighten MCKP. The proposed computation shows up GA 

while using a comparable presentation game plan, also, half breed and change managers in GA are moreover 

used as neighbor looks for in CRO. However, CRO and GA are absolutely particular in the way in which they 

attempting to find perfect game plan. GA is imitated from transformative procedure using three directors: 

change, cross breed, and region; while the CRO is reflect from engineered reaction process using four simple 

substance reactions: On-Wall Ineffective Collision, breaking down, Inter-nuclear insufficient, and mix. The 

investigation of MCKP test set demonstrates that CRO superior to GA. 

The rest of the paper is organized in sections: Section I briefly gives the original framework of CRO. 

Section II explains the modification of the original CRO to adapt it to the MCKP problem. Author survey the 

behavior of CRO and compare the simulated results of the CRO with GA in Section V. Author conclude this 

paper and suggest potential future work in Section VI. 

 

II. Basic Chemical Reaction Optimization 
CRO 

[7]
 is a metaheristic energized by the engineered reaction process. In CRO, one molecule (M) that 

has the sub-nuclear structure ω, potential essentialness (PE), Kinetic imperativeness (KE), least structure 

(minStruct), hits number (numHit), number of hit that minStruct is gotten (minHit) and various characteristics 

address a potential course of action. It replicates four sorts of substance reactions including on-divider lacking 

effect, disintegration, between nuclear inadequate accident and blend.  

In the reaction technique, the PE goes toward the unimportant state, similar to target work in 

improvement issues. PE is regularly used as the wellbeing of the objective work. 

Author mean PE_ω and KE_ω are PE and KE of an atom with particle structure ω, individually. An 

atom with particle structure ω is likewise called atom ω. 

CRO includes three phases: initial phase, iteration phase and final phase. The initial phase, assigning 

initial values for parameters PopSize, KElossRate, InitialKE, MoleColl, 𝛼, 𝛽 and buffer. An initial population 

(𝑃𝑜𝑝) including 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 molecules is generated. Their initial 𝐾𝐸𝑠 are assigned by 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐾𝐸, and their initial 

𝑃𝐸𝑠 are assigned by its objective function values. 

In each iteration, if 𝑟 > 𝑀𝑜𝑙𝑒𝐶𝑜𝑙𝑙, where 𝑟 is a randomly number distributed in [0,1], and 𝑀𝑜𝑙𝑒𝐶𝑜𝑙𝑙 ∈
 0,1  is a presetting system parameter then uni-molecular reaction is chosen. Otherwise, an inter-molecular 

reaction is trigged. In an uni-molecular reaction, one molecule 𝜔 is randomly chosen and check if it satisfies the 

decomposition condition:  𝑛𝑢𝑚𝐻𝑖𝑡𝜔 −𝑚𝑖𝑛𝐻𝑖𝑡𝜔 > 𝛼 , where 𝛼  is a presetting system parameter. If so, 

decomposition reaction is trigged, else the On-Wall ineffective collision is trigged. In inter-molecular, two 

molecules 𝜔1, 𝜔2 are randomly selected from the 𝑃𝑜𝑝 and check if synthesis condition is satisfied:(𝐾𝐸𝜔1
≤ 𝛽 

and 𝐾𝐸𝜔2
≤ 𝛽), where 𝛽 is a presetting system parameter, it consider as the minimum KE a molecule should 

have. Otherwise, an inter-molecular ineffective collision is executed. The pseudocode of CRO is described in 

Algorithm 1. 



Hybrid Chaotic Chemical Reaction Optimization for Multiple-Choice Knapsack Problem 

DOI: 10.9790/0050-07024655                                     www.iosrjournals.org                                             48 | Page 

 
 

2.1 Elementary reactions 

On-Wall Ineffective Collision 

When this reaction is trigged, one molecule 𝜔 is randomly chosen from the 𝑃𝑜𝑝; a neighborhood operator is 

used to generate a new one 𝜔′ . If the (1.5) holds. 

 𝑃𝐸𝜔 + 𝐾𝐸𝜔 ≥ 𝑃𝐸𝜔 ′  (1.5) 

In this case, 𝐾𝐸𝜔 ′  is obtained by  

 𝐾𝐸𝜔 ′ =  𝑃𝐸𝜔 + 𝐾𝐸𝜔 − 𝐾𝐸𝜔 ′  × 𝑞 

where𝑞 is a random number in  𝐾𝐸𝑙𝑜𝑠𝑠𝑅𝑎𝑡𝑒, 1 , 𝐾𝐸𝑙𝑜𝑠𝑠𝑅𝑎𝑡𝑒 ∈  0,1  is a presetting system parameter of CRO. 

The molecule 𝜔 is replaced by the new one 𝜔′ . The remaining 1 − 𝑞 portion of energy is transferred to a central 

energy buffer (𝑏𝑢𝑓𝑓𝑒𝑟). 

If (6.5) is not satisfied, the 𝑛𝑢𝑚𝐻𝑖𝑡𝜔  is increased by 1, 𝜔′  is discarded.  

 

Decomposition 

In the decomposition, a neighborhood search is used to generate two new molecules 𝜔′
1, 𝜔′

2 from one molecule 

𝜔. There are two cases, the change will be accepted. 

The first case, (1.6) is held.  

 𝑃𝐸𝜔 + 𝐾𝐸𝜔 ≥ 𝑃𝐸𝜔1
′ + 𝑃𝐸𝜔2

′  (1.6) 

Let 𝐸𝑡𝑒𝑚𝑝 1 = 𝑃𝐸𝜔 + 𝐾𝐸𝜔 − 𝑃𝐸𝜔1
′ − 𝑃𝐸𝜔2

′ . The 𝐾𝐸𝜔1
′ , and 𝐾𝐸𝜔2

′  are updated as follows. 

 𝐾𝐸𝜔1
′ = 𝐸𝑡𝑒𝑚𝑝 1 × 𝑞 

 𝐾𝐸𝜔2
′ = 𝐸𝑡𝑒𝑚𝑝 1 ×  1 − 𝑞  

where 𝑞 is a random number in [0; 1]. 

The second case, the reaction is also executed with the support of central energy 𝑏𝑢𝑓𝑓𝑒𝑟 when (1.7) is hold.  

 𝑃𝐸𝜔 + 𝐾𝐸𝜔 + 𝑞1 × 𝑞2 × 𝑏𝑢𝑓𝑓𝑒𝑟 ≥ 𝑃𝐸𝜔1
′ + 𝑃𝐸𝜔2

′  (1.7) 

where𝑞1 and 𝑞2 are randomly uniform number in [0,1]. In this case, let  

 𝐸𝑡𝑒𝑚𝑝 2 = 𝑃𝐸𝜔 + 𝐾𝐸𝜔 + 𝑞1 × 𝑞2 × 𝑏𝑢𝑓𝑓𝑒𝑟 − 𝑃𝐸𝜔1
′ − 𝑃𝐸𝜔2

′  

The 𝐾𝐸𝜔1
′ , 𝐾𝐸𝜔2

′  are updated as follows. 

 𝐾𝐸𝜔1
′ = 𝐸𝑡𝑒𝑚𝑝 2 × 𝑞3 
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 𝐾𝐸𝜔2
′ = 𝐸𝑡𝑒𝑚𝑝 2 ×  1 − 𝑞3  

where𝑞3 is a random number in [0; 1]. The 𝑞1 and𝑞2 are used to restrict the 𝐾𝐸𝜔1
′  and 𝐾𝐸𝜔2

′  from being too 

large, for the buffer is normally large. The buffer is then updated by  

 𝑏𝑢𝑓𝑓𝑒𝑟 =  1 − 𝑞1 × 𝑞2 𝑏𝑢𝑓𝑓𝑒𝑟 

If either (1.6) or (1.7) is satisfied, the molecule 𝜔 is removed from the 𝑃𝑜𝑝, two new ones 𝜔′
1 and 𝜔′

2  are 

added. Otherwise, the change is forbidden, only 𝑛𝑢𝑚𝐻𝑖𝑡𝜔  is increased by 1. 

 

Inter-molecular ineffective collision 

A neighborhood operator is used to generate two new molecules 𝜔′
1, 𝜔′

2 from two molecules 𝜔1 , 𝜔2. 

The change is accepted if (1.8) holds  

 𝑃𝐸𝜔1
+ 𝑃𝐸𝜔2

+ 𝐾𝐸𝜔1
+ 𝐾𝐸𝜔2

≥ 𝑃𝐸𝜔1
′ + 𝑃𝐸𝜔2

′  (1.8) 

Let 𝐸𝑡𝑒𝑚𝑝 = 𝑃𝐸𝜔1
+ 𝑃𝐸𝜔2

+ 𝐾𝐸𝜔1
+ 𝐾𝐸𝜔2

− 𝑃𝐸𝜔1
′ − 𝑃𝐸𝜔2

′ . 

𝐾𝐸𝜔1
′ and𝐾𝐸𝜔2

′  are updated respectively by  

 𝐾𝐸𝜔1
′ = 𝐸𝑡𝑒𝑚𝑝 × 𝑞 

 𝐾𝐸𝜔2
′ = 𝐸𝑡𝑒𝑚𝑝 ×  1 − 𝑞 , 

where𝑞 is a random number in [0; 1]. 𝑛𝑢𝑚𝐻𝑖𝑡𝜔1
′ , and 𝑛𝑢𝑚𝐻𝑖𝑡𝜔2

′  are increased by 1. 𝑚𝑖𝑛𝐻𝑖𝑡𝜔1
′ and𝑚𝑖𝑛𝐻𝑖𝑡𝜔2

′  

equal to 𝑛𝑢𝑚𝐻𝑖𝑡𝜔1
′  and 𝑚𝑖𝑛𝐻𝑖𝑡𝜔2

′ , respectively. If  is not satisfied, only 𝑛𝑢𝑚𝐻𝑖𝑡𝜔1
 and 𝑛𝑢𝑚𝐻𝑖𝑡𝜔2

 are 

increased by 1. 

 

Synthesis 

Firstly, one combining operator is used to combined two molecules 𝜔1 , 𝜔2 become one molecule 𝜔′ . If (1.9) is 

satisfied. 

 𝑃𝐸𝜔1
+ 𝑃𝐸𝜔2

+ 𝐾𝐸𝜔1
+ 𝐾𝐸𝜔2

≥ 𝑃𝐸𝜔 ′  (1.9) 

Then 𝐾𝐸𝜔 ′  is assigned by  𝐾𝐸𝜔 ′ = 𝑃𝐸𝜔1
+ 𝑃𝐸𝜔2

+ 𝐾𝐸𝜔1
+ 𝐾𝐸𝜔2

− 𝑃𝐸𝜔 ′  

The new molecule 𝜔′  is added to the 𝑃𝑜𝑝, and two old molecules 𝜔1 , 𝜔2 are discarded. 

 
Figure 1.1: Solution presentation 

 

If (1.9) is not satisfied, the 𝑛𝑢𝑚𝐻𝑖𝑡𝜔1
, and 𝑛𝑢𝑚𝐻𝑖𝑡𝜔2

 are increased by 1, 𝜔′  is discarded. The ideal of this 

operator is that a molecule with bigger 𝐾𝐸 has more chance to explore another place in the search space. 

 

III. Logistic chaotic map 
According to Geoff Boeing(2016), the logistic map is a polynomial mapping (equivalently, recurrence 

relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from 

very simple non-linear dynamical equations
[23]

. The map was popularized in a 1976 paper by the biologist 

Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by 

Pierre François Verhulst by Cheng Zhang (2010)
 [24]

. 

Mathematically, the logistic map is written 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) 
where xn is a number between zero and one that represents the ratio of existing population to the maximum 

possible population. The values of interest for the parameter r (sometimes also denoted μ) are those in the 

interval [0,4]. 

The chaotic have strong points in generate random sequence when compare with traditional random function. 

 

IV. Solving MCKP by Hybrid Chemical reaction optimization 
4.1 Solution Representation 

According to M Gen and R Cheng (2000), similar to GA in represent a solution 
[25]

. An integer string is 

used to represent a solution. The 𝑦𝑖  receives an integer in 𝑁𝑖 , it represents𝑦𝑖 ∈ 𝑁𝑖  is chosen. The string length is 

𝑚 corresponding to a solution in MCKP. The solution presentation is depicted in Fig. 6.1. By defining an 

indicator variable, 𝑦𝑖  is as follows:  

 𝑦𝑖 = 𝑗  𝑖𝑓 𝑥𝑖𝑗 = 1,    𝑗 ∈ 𝑁𝑖 ,    𝑖 = 1,2, … ,𝑚 
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4.2 Objective function 

The objective PE is calculated as formula:  

 𝑃𝐸 =  ‍𝑚
𝑖=1  ‍

𝑛𝑖
𝑖=1 𝑐𝑖𝑗 𝑥𝑖𝑗 + 𝑔 𝑥  (1.10) 

where𝑔 𝑥  is penalty function as following:  

 𝑔 𝑘 =  
0 𝑖𝑓  1.2  𝑖𝑠 𝑕𝑜𝑙𝑑

Ω0 +   ‍𝑚
𝑖=1  ‍

𝑛𝑖
𝑖=1 𝑤𝑖𝑗 𝑥𝑖𝑗 −𝑊 𝑖𝑓 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

  

where Ω0 is a given positive constant. The ideal here is that for violate solution will have a larger PE. It forces 

the algorithm search both sides of search space that is feasible and infeasible domains. 

 

4.3 Elementary operators 

On-wall operator 

This operator use for On-Wall Ineffective Collision reaction. One position 𝑖𝑡𝑕  is randomly selected from 

1,… ,𝑚, and value of 𝑦𝑖  is replaced by a random number in 1,… , 𝑛𝑖 . 

 

Inter-molecular ineffective collision operator 

Two solutions 𝜔1
′  and 𝜔2

′  are obtained from two solutions 𝜔1 and 𝜔2 . The two points crossover 

operator commonly used in GA is adopted. In the procedure, two points 𝑘1, 𝑘2 will be chosen to separate each 

of the solutions 𝜔1 and 𝜔2 to three parts. The solution 𝜔1
′  is created from the even parts of 𝜔1 combined with 

the odd parts of 𝜔2. The solution 𝜔2
′  is created from the even parts of 𝜔2 combined with the odd parts of 𝜔1. 

 

Decomposition operator 

This process produces two solutions from one original solution. This operator affects diversification 

and makes the algorithm explorer the search space. The decomposition operator is designed inspiring from the 

“half-total-exchange" operator that is used to solve the channel assignment problem 
[7]

. The operator creates two 

solutions 𝜔1
′  and 𝜔2

′  from solution 𝜔. Firstly, 𝜔 is duplicated to generate 𝜔1
′  and, 𝜔2

′ . After that, perturbations 

for 𝑛/2 positions in solutions 𝜔1
′  and 𝜔2

′  are made randomly. The pseudocode of the decomposition operator is 

described in Algorithm 10. 

Algorithm 10:decomposition (𝜔) 

Input: Solution 𝜔 

Output:𝜔1
′ and 𝜔2

′  

1  Duplicate 𝜔  to produce  𝜔1
′ 𝑎𝑛𝑑𝜔2

′ for change ← 1 to 𝑛/2do 

2    Get i and j randomly in the set of  1, . . . , 𝑚 . 
3𝜔1

′  𝑖 𝑎𝑛𝑑𝜔2
′  𝑗 are assigned by two random integers in 𝑁𝑖 𝑎𝑛𝑑 𝑁𝑗 , respectively  

4   return 

Synthesis operator 

In this algorithm, the synthesis operator is used 
[13]

.The operator combines two molecules with solutions 𝜔1 and 

𝜔2  into one molecule with solution 𝜔′ .For each 𝜔′  (i) is randomly selected from 𝜔1 (i) or 𝜔2 (i).The repair 

function is also used to ensure the constraint is met. The pseudocode of the synthesis operator is described in 

Algorithm 11. 

 

Algorithm 11:synthesis 𝜔1 , 𝜔2  

Input: Solution 𝜔1𝑎𝑛𝑑𝜔2 

Output: Solution𝜔′  

1for𝑖 ← 1 to n do 

2    Get r randomly in [0,1] 

3if  𝒓 > 0.5 then 

4      𝝎′ 𝒊 ← 𝝎𝟏 𝒊  
5    else 

6      𝝎′ 𝒊 ← 𝝎𝟐 𝒊  
7   return 
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V. Experiment and analysis 
5.1 Data test set 

All the algorithms were implemented in Matlab R2016b. The test environment is set up on a personal computer 

with Intel core i5 CPU at 1.6 GHz CPU, 2G RAM, running on Windows 10. 

Author will consider how the algorithm behaves for different problem sizes, test instances, and data-ranges. 

Two types of randomly generated data instances are considered, each instance tested with data-range 𝑅 = 1000 

for different number of classes 𝑚 and sizes 𝑛𝑖 :  

    • Strongly correlated data instances (SC): In knapsack problem 𝑤𝑗  is randomly generated in [1, R] and 

𝑐𝑗 = 𝑤𝑗 + 10 . For each class 𝑖  generate 𝑛𝑖  items (𝑤 ′
𝑗 , 𝑐′𝑗 ) as for knapsack problem, and order these by 

increasing weight. The data instance for MCKP is then 𝑤𝑖𝑗 =  ‍
𝑗
𝑕=1 𝑤 ′

𝑕 and 𝑐𝑖𝑗 =  ‍
𝑗
𝑕=1 𝑐′ 𝑕 , 𝑗 = 1,2, … , 𝑛𝑖 . 

Such instances have no dominated items, and form an upper convex set. 

    • Subset-sum data instances (SS): Each 𝑤𝑖𝑗  is randomly chosen in [1, R] and 𝑤𝑖𝑗 = 𝑐𝑖𝑗 . These instances are 

hard because its upper bound will yield 𝑢𝑖𝑗 = 𝑊[105]
. 

For each instance, the C is calculated as follows. 

 𝑊 =
1

2
  ‍𝑚

𝑖=1 𝑚𝑖𝑛𝑗∈𝑁𝑖
 𝑤𝑖𝑗  + 𝑚𝑎𝑥𝑗 ∈𝑁𝑖

 𝑤𝑖𝑗    

 

5.2 Parameter setting 

GA’s parameters are set: 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 = 20, 𝑃𝑐 = 0.8, 𝑃𝑚 = 0.1[10]
. 

For the CRO, parameter setting affects its performance. Our goal is to assign parameter values to CRO with 

relatively good performance for the test instances. The parameters are assigned for CRO1 and CRO2 as follows: 

KElossRate = 0.8, InitialKE = 1000, PopSize = 20, MoleColl = 0.2, buffer = 0, α = 10000 and β = 10. For 

CRO2, the random generation is replaced by logistic chaotic map. 

 

5.3 Experiment results 

Author observe the convergence curves of three test instances in the strongly correlated test set. The 

three instances with  𝑚 = 10, 𝑛 = 10 ,  𝑚 = 100, 𝑛 = 100 , and  𝑚 = 1000, 𝑛 = 100  are used in this 

experiment. Figure 1.3 shows the evolution of the mean of the best total costs of CRO1 and CRO 2 over 30 runs 

in the three instances.  It indicates the global search ability and the convergence ability of CRO. There are 

several observations and they are given as follows: 

In the case  𝑚 = 10, 𝑛 = 10 , as depict in Fig. 1.2(a) the convergence curve of GA is tied with CRO’s, 

but CRO is still better. For instance  𝑚 = 100, 𝑛 = 100 , the Fig. 1.2(b) shows that CRO have a much more 

quick convergence compares with GA, and PSO. For larger instance  𝑚 = 1000, 𝑛 = 100 , the Fig. 1.2(c) 

show that CRO still have a good convergence, while GA, and PSO shows a very slow convergence. From the 

Fig. 1.2 shows that CRO much more better GA, and PSO in convergent rate and solution quality when solving 

large MCKP. 

Author adopt the same stopping criterion, that the function evaluation limit is set to 100000, for all the test. 

Table 1.1 shows the experimental results of the strongly correlated instances. For all the proposed 

instances, CRO yields superior results compared with GA, and PSO. The series of experimental results 

demonstrate the superiority and effectiveness of CRO. In comparison with GA, and PSO; CRO can get better 

results in a shorter time. The smaller standard deviation (StdDev) shows that the new algorithm is more robust 

than GA, and PSO. 

Table 1.2 shows the experimental results of the subset-sum instances. In all the instances, CRO shows 

much better than GA, and PSO in the solution quality. 

Instances Algorithm mean worst best stdDev time 

m=10, n=10 

GA 873.20 870.00 893.20 15.98 7.076 

PSO 878.79 873.51 898.92 0.00 7.355 

CRO1 887.10 881.91 907.00 15.98 7.076 

CRO2 893.75 883.67 907.29 0.00 7.355 

m=10, n=100 

GA 584.40 243.80 684.40 294.60 13.9 

PSO 591.23 246.36 687.45 0.00 7.384 

CRO1 593.64 250.25 689.46 294.60 13.9 

CRO2 594.02 259.69 696.06 0.00 7.384 

m=10, n=1000 

GA 3065.00 2340.80 3065.00 1807.00 20.74 

PSO 3070.34 2348.00 3073.42 0.28 7.655 

CRO1 3072.82 2352.00 3080.65 1807.00 20.74 

CRO2 3081.18 2353.02 3087.80 0.28 7.655 

m=10, n=10 
GA 30910.05 25289.44 30910.34 2978.00 29.66 

PSO 30918.21 25293.01 30915.24 0.00 8.969 
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Table 1.1: Experimental results for strongly correlated instances 

 

Table 1.2: Experimental results for subset-sum instances 

 

 
(a)m=10, n=10 

CRO1 30923.18 25297.21 30919.25 2978.00 29.66 

CRO2 30927.13 25303.29 30926.10 2978.00 25.66 

m=100, n=10 

GA 200000.00 100000.00 200000.00 24365.00 39.12 

PSO 200002.93 100000.95 200005.24 22.20 8.47 

CRO1 200005.18 100005.30 200010.24 24365.00 39.12 

CRO2 200007.84 100006.14 200011.83 24365.00 34.12 

m=100, n=100 

GA 2000230.00 1700000.00 2000230.00 300000.00 49.94 

PSO 2000230.99 1700005.80 2000234.16 31.04 9.075 

CRO1 2000235.89 1700015.15 2000239.95 300000.00 49.94 

CRO2 2000238.94 1700021.73 2000246.53 300000.00 49.4 

m=1000, n=10 

GA 10170210.00 10000000.00 10170210.00 31502.00 95.15 

PSO 10170218.34 10000004.60 10170211.14 133.22 17.89 

CRO1 10170226.44 10000009.73 10170213.23 31502.00 95.15 

CRO2 10170228.11 10000011.93 10170222.34 31502.00 99.15 

Instances Algorithm mean worst best stdDev time 

m=10, n=10 

GA 833.20 820.04 893.20 17.98 6.08 

PSO 834.48 823.89 893.78 0.00 7.36 

CRO1 836.16 829.27 893.99 15.98 7.08 

CRO2 844.45 834.44 903.71 0.00 7.36 

m=10, n=100 

GA 582.40 443.80 683.40 24.60 13.90 

PSO 590.45 448.32 692.14 0.00 6.38 

CRO1 599.73 454.17 700.07 294.60 13.90 

CRO2 607.66 455.19 707.02 0.00 7.38 

m=10, n=1000 

GA 3061.00 2740.80 3165.00 1807.00 20.74 

PSO 3061.62 2750.60 3165.99 0.28 7.66 

CRO1 3064.40 2757.72 3171.80 1807.00 20.74 

CRO2 3069.86 2764.10 3176.99 0.28 7.66 

m=10, n=10 

GA 30910.05 25289.44 30910.34 2978.00 29.66 

PSO 30917.24 25295.45 30911.79 0.00 8.97 

CRO1 30917.59 25305.40 30917.96 2978.00 9.66 

CRO2 30920.90 25312.24 30922.88 2978.00 25.66 

m=100, n=10 

GA 201230.00 201122.00 200000.00 24365.00 39.12 

PSO 201232.37 201124.45 200007.91 22.20 8.47 

CRO1 201240.67 201125.29 200010.70 24365.00 39.12 

CRO2 201248.73 201131.73 200018.87 24365.00 34.12 

m=100, n=100 

GA 000230.00 1700022.00 2000230.00 300000.00 49.94 

PSO 2000236.52 1700031.23 2000234.26 31.04 9.08 

CRO1 2000246.04 1700032.54 2000235.50 300000.00 49.94 

CRO2 2000246.43 1700038.89 2000239.93 300000.00 49.40 

m=1000, n=10 

GA 9170210.00 9000000.00 9170210.00 1502.00 95.15 

PSO 9170217.10 9000001.48 9170216.60 133.22 17.89 

CRO1 9170220.38 9000005.70 9170221.31 31502.00 95.15 

CRO2 9170220.79 9000010.49 9170223.73 31502.00 99.15 
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(b)m=100, n=100 

 
(c)m=1000, n=100 

Figure 1.2: Comparison of GA, PSO, CRO1, and CRO2 on the MCKP. The objective function value ere 

averaged over 25 runs 

 

 
(a)m=1000, n=10 
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(b)m=1000, n=100 

Figure 1.3: Comparison of GA, PSO, CRO1, and CRO2 on the MCKP. The objective function value was 

averaged over 30 runs 

 

VI. Conclusion 
Multiple-choice knapsack problem is a well-known NP-hard problem. It has a large wide range of 

applications in real-world problems and mathematic theory. Chemical reaction optimization is a new 

metaheuristic mimic from a chemical reaction process that has shown excellent outperform many state-of-the-art 

approaches. The new algorithm in this chapter based on chemical reaction optimization metaheuristic is 

proposed to solve this problem. The experiment on a large range of data set demonstrates that the proposed 

method has superior performance when compared with GA, and PSO. In the future, author will develop a 

parallel version of this algorithm that improved efficiency. 
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