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ABSTRACT: In this paper, we used the innovative technique recommended for the calculation of natural 

frequencies of a vibrating cantilever bar with a finite number of symmetric transverse open cracks. Additionally, 

the transfer matrix and the finite element method are considered to deal with the same problem. The procedure 

proposed is advanced by removal of numerical calculation of the high order element so that the computer time 

for calculating the natural frequencies is considerably reduced. Numerical analysis has been carried out to 

examine the effect of each single crack, the number of cracks and cantilever end condition bar for natural 

frequencies. The paper contains the cantilever bars with three cracks which permit the evaluation of natural 

frequencies predictable by these three methods. 
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I. INTRODUCTION 
Cracks present a severe threat to the performance of structures and for this reason techniques allowing 

early finding and localization of cracks have been the subject of thorough investigations the last two decades. As 

a consequence, a variety of analytical, numerical and experimental studies now exist. A number of researchers 

have dealt with this topic by addressing either the direct or the inverse problem. In the modeling of structures 

with cracks, it is necessary to underscore the finite element method [1, 2]. This approach has no concurrence in 

application to large structures, but for specification of crack location in an element such as beam the analytical 

model of the element is more beneficial. In the analytical model of beams, crack is treated as a local change of 

stiffness (or flexibility) at a section of crack location. To model crack in this conception, Dimagoronas 

suggested the use of an equivalent rotational spring connecting both the sides of a beam at the crack position. 

Shekar [3] have studied the significance of dynamic behavior of rotors with double cracks and developed the 

finite element modeling of a rotor bearing system for the analysis of vibration characteristics of a rotor with two 

transverse open cracks. Tsai and Wang [4] have developed the theory for stepped cantilevers and for 

Timoshenko beam. Rizoset al. [5] have constructed the equation for cantilever beam by using the transverse 

model. Narkis [6] has given the equations for simply supported beam in both the cases of transverse and axial 

crack models. Ruotoloet al. [7] has studied the dynamic behaviour of a double-cracked beam and a rotor with 

two cracks. Shifrin and Ruotolo [8] was studied the beam with an arbitrary number n of cracks. who proposed a 

new method for evaluating natural frequencies of such a beam, that requires to calculate determinant of (n+2) 

order instead of (4n+4)-matrix determinant search as usually needed. Masoudet al. [9] have considered the case 

of axially loaded fixed cracked beam. Qinkai Han [10] have performed the dynamic analysis of a geared rotor- 

bearing structure with a breathing slant crack. A.K. Darpe et al. [11] have formulated the equation of motion of 

the rotor with a transverse surface crack with a bow and also attempted transient response and steady state 

analysis of the rotor.  Nandwana and Maiti [12] have been established in a general form for all of classical 

boundary. As a result, the aim of this article is determine the longitudinal dynamic behavior of bars with several 

open cracks by extending the method previously proposed by Shifrin and Ruotolo [8] for the prediction of the 

transverse dynamic behaviour of multi-cracked beams.  Some numerical examples complete the article, and 

comparisons are drawn with corresponding results provided by a transfer matrix approach and by the finite 

element method. 

II. THEORETICAL ANALYSIS 

 
Fig.1. Multi-cracked cantilever bar 
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A bar with length l and with n cracks is considered (Fig.1). It is assumed that cracks are located at 

points 1 2, .......... nx x x such that 1 20 .......... nx x x l     Amplitudes of longitudinal displacement of the 

beam axis under time-harmonic vibration are denoted by ( )ju x on the interval 1j jx x x    

Where 1,2,....., 1,j n  0 0x  and 1nx l  .   

According to the approach proposed in Ref. [5], it is possible to division the total bar into 1n   bars joined by 

massless springs indicating the n cracks. As a consequence, the equation of harmonic longitudinal oscillations of 

each bar, assumed with uniform cross-section is  
" 2

1 ,( ) ( ) 0, 1,......, 1,j j j jEAu x Au x j n x x x       
  (1) 

Where E is Young’s modulus, A is the area of the cross section,  is the material density, and   is a natural 

circular frequency. It is possible to introduce two conditions for each connection between two bars which, in 

correspondence with the location of the crack, impose continuity for the normal force and discontinuity for the 

longitudinal displacement of the bar in correspondence of the crack. 
'

1( ) ( ) ( ), 1,2,........, ,j j j j j j ju x u x EAcu x j n     
(2) 

Where jc is the flexibility of the thj translational spring which is function of the crack extent and bar width. In 

order to consider only the effect of the longitudinal vibrations, a double edge crack, symmetrical with respect to 

the longitudinal axis of the bar  
22 (1 )

( )j tt j

h v
C s

EA





(3) 

with j js a h where aj is the depth of the thj crack  

The general solution can be written as, 

 0

1

( ) cos( ) sin( ) ( ) cos ( ) 1                     (4)
n

j j

j

u x x x H x x x xj    


        

Where  ,  are constants . By differentiating the previous function once it is possible to obtain the expression 

for 
"

0 ( )u x  at the cracks positions ix  

'

0

1

( ) sin( ) cos( )
n

i i i j ij

j

u x x x N   


                                     (5)                                                             

1. Transfer matrix method 

In this section the technique of transfer matrix, for computing the natural frequencies of a multi-cracked bar in 

bending vibration, has been extended to define the natural frequencies of a bar with fixed- free end conditions. 

The general solution for the thj  segment of Eq. (1) is 

1, 1 2, 1( ) cos ( ) sin ( )j j j j ju x C x x C x x                                                                (6) 

Consequently, variables at the right end of the bar can be expressed as a function of those at the left end: 

            1 0 01 1............... 11 1 1
( ) ( ) ( )n n n nn

Z x T Q Q Q Z x Q Z x  
                                  (7) 

 0

0 1
( ) 0

T

B Z x  ,       1 01 1
( ) ( ) 0,

T T
l l

n n
B Z x B Q Z x 

    (8) 

In order to determine the natural frequencies of the bar, the following equation must be solved: 

    0 0

1 1 12 1 22 1 1 11 1 21det ( , , ) ( ) ( ) 0l l l lA X C B B Q B Q B B Q B Q        (9)                                       

For the following boundary conditions Eq. (9) becomes 
0 0

1 1 1 2 22 220det[ ] 0l lfixed freeB B Q Q        (10) 

Numerical results and discussion 
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In order to validate the procedures proposed in this paper,the dynamic behavior of a cantilever bar with three 

cracks has been simulated. The results are equated with those obtained using a finite element model with ten 

elements. The bar under analysis has the following mechanical properties: Length L=1m, Young’s modulus 

E=2e+11N/m
2
, Material density  = 7800kg/m

3
, Poisson’s ratio µ=0.33and the rectangular cross-section with 

Width b=0.03 m and Height h = 0.03m.In use of the method developed in the present paper for the same rod, 

numerical computation has been carried out and results were compared also with those given in reference [8]. 

The first three natural frequencies for cantilever bar, for the undamaged case, are listed in Table 1, allowing 

comparison of the results predicted by the continuous model with the finite element method. 

 

Table.1. Natural frequencies for the undamaged cantilever bars calculated using the continuous model and FEM 

𝑓𝑛(𝐻𝑧) Continuous FEM 

1 1631 1633 

2 4884 4930 

3 8137 8347 

 

3.1 Effect of crack position and depth 

Figure 2-4 provides the ratios of the first three natural frequencies for the bar with crack to the equivalent 

frequencies of the uncracked bar in fixed-free end condition of bar. The bar with a fixed end has a first crack at 

position x1 = 0.1 m and crack depth a1=0.003m, a second crack at position x2 =0.2 m and depth a2 =0.006m 

and third crack position x3=0.3 distance calculated from the fixed end and crack depth a3=0.009m. a relative  

crack depth  a/h of 0.1, 0.2 and 0.3 have presented. 

 

 
 

 

 

 
 

 

 

III. CONCLUSIONS 
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Fig. 2. Effect of the third crack on the first natural 

frequency for the cantilever bar 

Fig.3. Effect of the third crack on the second natural 

frequency for the cantilever bar. 

 

Fig. 4. Effect of the third crack on the third natural frequency for the cantilever bar 
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In this paper natural frequencies of a cracked bar are evaluated by representing cracks as massless 

springs and considering a continuous mathematical model of the bar in longitudinal vibration. The frequency 

equation has been used to examine the effect of crack location and depth, number of cracks on the natural 

frequencies of a bar. One of the results obtained is that independent of the number of cracks there exists a set of 

positions in bar at which the presence of crack does not affect certain natural frequencies of the bar. These 

positions for a given frequency are called the critical points. Furthermore, the numerical computation shows also 

that increase in the number of cracks, in general, reduces all natural frequencies for cantilever bar. Finally a 

comparison of results obtained using the two methods based on a continuous model and the finite element 

method shows a very good agreement giving validity to the procedures proposed. 
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