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Abstract: Functionally gradient materials (FGM) are one of the most widely used materials in various 

applications because of their adaptability to different situations by changing the material constituents as per the 

requirement. Most structural components used in the field of engineering can be classified as beams, plates, or 

shells for analysis purposes. In the present study the power law, sigmoid and exponential distribution is 

considered for the volume fraction distributions of the functionally graded plates. The work includes parametric 

studies performed by varying volume fraction distributions and boundary conditions. Also static analysis of 

functionally gradient material plate is carried out by sigmoid law and verified with the published results. The 

convergence study of the results is optimized by changing the mesh size and layer size. Power law and 

exponential law are applied for the same material and set of conditions.  

Keyword: A. Functional composites C. Elastic properties C. Finite element analysis (FEA) 

 

I. Introduction 
The material property of the FGM can be tailored to accomplish the specific demands in various engineering 

utilizations to achieve the advantage of the properties of individual material. This is possible due to the material 

composition of the FGM changes sequentially in a preferred direction. The thermo-mechanical deformation of 

FGM structures have attracted the attention of many researchers in the past few years in different engineering 

applications which include design of aerospace structures, heat  engine components and nuclear power plants 

etc. A huge amount of published literature observed for evaluation of thermomechanical behavior of 

functionally gradient material plate using finite element techniques. It includes both linearity and non linearity 

in various areas. A few of published literature highlights the importance of topic. A number of approaches have 

been employed to study the static bending problems of FGM plates. The assessment of thermo-mechanical 

deformation behavior of functionally graded plate structures considerably depends on the plate model 

kinematics. G. N. Praveen and J. N. Reddy (1997) reported that the response of the plates with material 

properties between those of the ceramic and metal is not intermediate to the responses of the ceramic and metal 

plates [1]. J. N. Reddy (1998) reported theoretical formulations and finite element analysis of the 

thermomechanical, transient response of functionally graded cylinders and plates with nonlinearity [2]. Z.-Q. 

Cheng, R.C. Batra (1999), developed a new solution in closed form for the functionally graded elliptic plate 

rigidly clamped at the edges.It was found that thein-plane displacements and transverse shear stresses in a 

functionally graded plate do not agree with those assumed in classical and shear deformation plate theories [3]. 

J. N. Reddy (2000) formulated Navier's solutions in conjunction with Finite element models of rectangular 

plates based on the third-order shear deformation plate theory for functionally graded plates [4]. Bhavani V. 

Sankar (2002) solved the thermoelastic equilibrium equations for a functionally graded beam in closed-form to 

obtain the axial stress distribution [5]. L.F. Qian, R.C. Batra, L.M. Chen (2004) analyzed static deformations, 

free and forced vibrations of a thick rectangular functionally graded elastic plate by using a higher order shear 

and normal deformable plate theory and a meshless local Petrov–Galerkin (MLPG) method [6].A.J.M. 

Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, P.A.L.S. Martins (2005), presented the use of the 

collocation method with the radial basis functions to analyze several plate and beam problems with a third-order 

shear deformation plate theory (TSDT) [7]. M. Tahani1, M. A. Torabizadeh and A. Fereidoon (2006), 

developedanalytical method to analyze analytically displacements and stresses in a functionally graded 

composite beam subjected to transverse load and the results obtained from this method were compared with the 

finite element solution done by ANSYS [8]. Shyang-Ho Chi, Yen-Ling Chung (2006) evaluated the numerical 

solutions directly from theoretical formulations and calculated by finite element method using MARC 

program.Besides, they compared the results of P-FGM, S-FGM and E-FGM [9] [10]. Hui Wang, Qing-Hua 

Qin (2007) developed a meshless algorithm to simulate the static thermal stress distribution in two-dimensional 

(2D) functionally graded materials (FGMs). The analog equation method (AEM) was used to obtain the 

equivalent homogeneous system to the original nonhomogeneous equation [11]. Yasser M. Shabana, Naotake 

Noda (2008) used the homogenization method (HM) based on the finite element method (FEM) to determine 

the full set of the macroscopic effective properties which lead to the same thermomechanical behavior as the one 
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of the material with the periodic microstructure [12]. M. Mahdavian (2009), derived equilibrium and stability 

equations of a FGM rectangular plate under uniform in-plane compression [13]. Ashraf M. Zenkour and 

Daoud S. Mashat (2010) determined the thermal buckling response of functionally graded plates using 

sinusoidal shear deformation plate theory (SPT) [14]. S.S. Alieldin, A.E. Alshorbagy, M. Shaat (2011), 

proposed three transformation procedures of a laminated composite plate to an equivalent single-layer FG plate. 

The first approach is a curve fitting approach which is used to obtain an equivalent function of the FG material 

property, the second approach is the effective material property approach and the third approach is the volume 

fraction approach in which the FG material property varies through the plate thickness with the power law [15]. 

Kyung-Su Na, and Ji-Hwan Kim (2011) reported stress analysis of functionally graded composite plates 

composed of ceramic, functionally graded material and metal layers using finite element method. Numerical 

results were compared for three types of materials. The 18-node solid element was selected for more accurate 

modeling of material properties in the thickness direction [16]. Vanam B. C. L., Rajyalakshmi M. and Inala 

R. (2012) analyzed the static analysis of an isotropic rectangular plate with various boundary conditions and 

various types of load applications. Numerical analysis (finite element analysis, FEA) has been carried out by 

developing programming in mathematical software MATLAB and they compared results with that were 

obtained by finite element analysis software ANSYS [17]. MostaphaRaki, Reza Alipour and 

AmirabbasKamanbedast (2012), derived equilibrium and stability equations of a rectangular plate made of 

functionally graded material (FGM) under thermal loads based on the higher order shear deformation plate 

theory [18]. Mohammad Talha and B N Singh (2012) reported formulations based on higher order shear 

deformation theory with a considerable amendment in the transverse displacement using finite element method 

(FEM) [19].Srinivas.G and Shiva Prasad.U (2012) focused on analysis of FGM flat plates under mechanical 

loading in order to understand the effect variation of material properties on structural response using ANSYS 

software [20]. Srinivas.G and Shiva Prasad.U (2013) focused on analysis of FGM flat plates under thermal 

loading in order to understand the effect variation of material properties has on structural response. Results are 

compared to published results in order to show the accuracy of modeling FGMs using ANSYS software [21].  

In the present study the power law, sigmoid and exponential distribution is considered for the volume fraction 

distributions of the functionally graded plates. The studies include analysis of the response of structural element 

specifically plates made of functionally graded materials. The work includes parametric studies performed by 

varying volume fraction distributions and boundary conditions. The finite element software ANSYS APDL-13 

is used for the modeling and analysis purpose. 

 

II. Material gradient of FGMplates 
The effective material properties like Young‘s modulus, Poisson‘s ratio, coefficient of thermal expansion, 

thermal conductivity etc. on the upper and lower surfaces are different but are preassigned. However, the 

Young‘s modulus and Poisson‘s ratio of the plates vary continuously only in the thickness direction (z-axis) 

i.e.E = E(z), ν = ν (z). However, the Young‘s moduli in the thickness direction of the FGM plates vary with 

power-law functions (P-FGM), exponential functions (E-FGM), or with sigmoid functions (S-FGM).A mixture 

of the two materials composes the through the thickness characteristics. The FGM plate of thickness ‗h‘ is 

modeled usually with one side of the material as ceramic and the other side as metal.   

  

2.1 Power Law 

The material properties of a P-FGM can be determined by the rule of mixture:  

P(z) = (Pt−Pb)Vf +Pb         (1) 

Material properties are dependent on the volume fraction Vf of P-FGM which obeys power law 

 Vf=(z/h+1/2)
n
         (2) 

where n is a parameter that dictates the material variation profile through the thickness known as is the volume 

fraction exponent. At bottom face, (z/h) = -1/2 and Vf =0, hence P(z) = Pb and At top face, (z/h) =1/2 and so Vf 

=1, hence P(z)= Pt where P denotes a generic material property like modulus, Pt and Pb denote the property of 

the top and bottom faces of the plate. 
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Figure1:Variation of Young‘s modulus in a P-FGM with ‗n‘. 

 

At n = 0 the plate is a fully ceramic plate while at n = ∞ the plate is fully metal. The variation of Young‘s 

modulus in the thickness direction of the P-FGM plate is depicted in Figure 1., which shows that the Young‘s 

modulus changes rapidly near the lowest surface for n > 1, and increases quickly near the top surface for n < 1.  

 

2.2 Sigmoid Law: 

In the case of adding an FGM of a single power-law function to the multi-layered composite, stress 

concentrations appear on one of the interfaces where the material is continuous but changes rapidly .Therefore, 

Chung and Chi (2001) defined the volume fraction using two power-law functions to ensure smooth 

distribution of stresses among all the interfaces. The two power law functions are defined by: 
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By using the rule of mixture, the Young‘s modulus of the S-FGM can be calculated by:

       2111 1 EzgEzgzE  for 0≤z≤h/2 and        2212 1 EzgEzgzE  for  -h/2≤z≤0    

        

 
Figure 2. Variation of Young‘s modulus in a S-FGM with ‗n‘. 
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The variation of Young‘s modulus in the thickness direction of the S-FGM plate is depicted in Figure2., which 

shows that the Young‘s modulus changes are gradual because of using two power law functions together as 

described above.  

 

2.3 Exponential Law: 

Many researchers used the exponential function to describe the material properties of FGMs as follows:
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The material distribution in the E-FGM plates is plotted in Figure 3. 

 
Figure 3.Variation of Young‘s modulus in a E-FGM plate. 

 

III. Finite Element Modeling Technique 
The material properties of the FGM change throughout the thickness, the numerical model is to be broken up 

into various ―layers‖ in order to capture the change in properties. These ―layers‖ capture a finite portion of the 

thickness and are treated like isotropic materials. Material properties are calculated from the bottom surface 

using the various volume fraction distribution laws. The ―layers‖ and their associated properties are then layered 

together to establish the through-the-thickness variation of material properties. Although the layered structure 

does not reflect the gradual change in material properties, a sufficient number of ―layers‖ can reasonably 

approximate the material gradation. In this paper, the modeling and analysis of FGM plate is carried out using 

ANSYS software. ANSYS offers a number of elements to choose from for the modeling of gradient materials. 

The FGM characteristics under mechanical and thermal loads studied on a flat plate were modeled in 3-D.  

 

IV. Comparative study 
To ascertain the accuracy and proficiency of the present finite element formulation, two examples have 

been analyzed for thermo-mechanical deformations of the FGM plates.  

Example 1: We first consider the accuracy of the present finite element formulation by comparing the results 

with those given by A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian and P.A.L.S. Martins (2005).It 

is based on the meshless collocation method and a third-order shear deformation theory. In this example, the 

analysis is performed on a square functionally graded plate simply supported at all its edges (SSSS) for side to 

thickness ratio a/h = 20, volume fraction index n = 0 (ceramic), 0.5, 1.0, 2, and ∞ (metal) with aspect ratio a/b = 

1 where h is the thickness of the plate. The top surface of the plate is ceramic-rich, whereas the bottom surface is 

metal-rich. The plate is comprised of metal (Aluminium) and Ceramic (Zirconia). The material properties are 

taken as Eb= 70 × 10
9
 N/m

2
 for Aluminium, and Et= 151 × 10

9
 N/m

2
 for ceramic. Poisson‘s ratio for both the 

materials have been taken as ν = 0.3. The transverse displacement uz has been non-dimensional as follows:   ̅̅ ̅= 

uz/h. The comparison of present results with published results is presented in Table 1 which shows the 

agreement between the two results is excellent. The difference between the two results is below 3%. The results 

show that the performance of the present formulation is very good in terms of solution accuracy. 
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Table 1.Comparison of Present Results With published results 
Volume Fraction Exponent (n) Published Results Present Results % Difference 

Ceramic (0) 0.0205 0.021 2.43 

0.5 0.0262 0.0268 2.29 

1 0.0294 0.0302 2.72 

2 0.0323 0.0332 2.79 

Metal (∞) 0.0443 0.0456 2.93 

 

V. Convergence study 
Example 2: The convergence study with respect to varying mesh size and number of layers has been carried 

out. The obtained results are compared with those given by Shyang-Ho Chi, Yen-Ling Chung (2006). In this 

example, the analysis is performed on a square functionally graded plate simply supported at all its edges 

(SSSS) for side to thickness ratio a/h = 50, volume fraction index n = 2with varying aspect ratio (a/h) where h is 

the thickness of the plate. The material properties are taken as Ebottom= 210 × 10
9
 N/m

2
 and Etop= 21 × 10

9
 N/m

2
. 

Poisson‘s ratio have been taken constant as ν = 0.3. The transverse displacement uz and stress have been non-

dimensional as follows:   ̅̅ ̅= uz/h, and  ̅= sy/p. The comparison of present results with published results is 

presented in Figure 4 and Figure 5. 

 

 
 

Figure 4. The maximum deflection of an S-FGM plate versus the aspect ratio (a/h) 

 
Figure5. The maximum tensile stress of an S-FGM plate versus the aspect ratio (a/h) 

 

Figure 4 and Figure 5 show the variation of maximum deflection and maximum tensile stress for varying aspect 

ratio (a/h). An excellent agreement between the present and published results can be observed. The results show 

that the performance of the present formulation is very good in terms of solution accuracy. 
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Table 2: Convergence study of simply supported FGM plate with respect to mesh size. 

Parameters 6X6 10X10 20X20 50X50 100X100 
Published 

Results 
% Difference 

ux (X10-5) 7.97 7.95 7.96 7.99 8.01 8.03 0.25 

uz (X10-3) 7.20 7.21 7.22 7.26 7.28 7.38 1.37 

Sx (X108) 1.21 1.26 1.29 1.30 1.31 1.35 2.74 

ex (X10-4) 4.10 4.27 4.35 4.39 4.41 4.44 0.79 

 

In Table 2 the results for transverse deflection, stress and strain are presented for various mesh size. Table 2 

shows that as the mesh size increases, the obtained results converge towards the published results. The 

difference between the two results for transverse deflection below 1.5% and the difference between the two 

results for tensile stress is below 3% which shows the agreement between the two results is excellent. The 

results show that the performance of the present formulation is very good in terms of solution accuracy. Hence 

finer mesh will help in attaining accurate results. Since higher mesh gives better results, 100X100 mesh is 

considered for the present work. The convergence study with respect to varying number of layers is shown in 

Table 3. The FGM plate is modeled considering 4, 8 and 16 layers with a mesh size of 100×100. In Table 3 the 

results for transverse deflection, stress and strain are presented. The difference between the two results for 

transverse deflection is below 2.5% and the difference between the two results for tensile stress is below 2%. 

Table 3 shows that as the number of layers increases, the obtained results converge towards the published 

results. Since higher number of layers gives better results, 16 layers have been used in the present work. 

Therefore, based on the convergence study of mesh size and no. of layers, it is concluded that (100 × 100) mesh 

and 16 no. of layers are acceptable for thermoechanical deformation behavior of the FGM plate. 

 

Table 3 : Convergence study of simply supported FGM plate with respect to no. of layers. 

Parameters 4 layers 8 layers 16 layers Published Results % Difference 

ux (X10-5) 6.88 7.99 8.30 8.03 3.25 

uz (X10-3) 6.77 7.26 7.40 7.38 2.41 

Sx (X108) 1.20 1.30 1.33 1.35 -1.89 

ex (X10-4) 4.25 4.39 4.43 4.44 -2.26 

 

VI. Results and analysis 
The mechanical analysis is conducted for FGM made of combination of metal and ceramic. The metal 

and ceramic chosen are Aluminum and Zirconia respectively. The Young's modulus for Aluminum (Em) is 70 

GPa and for Zirconia (Ec) 151 GPa. The Poisson's ratio for both the materials is taken as 0.3.A square FGM 

plate of simply supported at all of its edges (SSSS) is considered here. The thickness of the plate (h) is taken 

0.02m and the aspect ratio (a/b) is taken unity. The value of the udl (po) chosen was equal to 1Xl0
6 
N/m

2
.  

The mechanical analysis is performed by applying uniformly distributed load (udl) and point load for various 

boundary conditions SSSS, CCCC, SCSC, CFCF, CCFF, CCSS, SSFF, SSSC, SSSF and SSCF. The 

abbreviation S, C and F stand for simply supported, clamped and free edges respectively. The boundary 

conditions imposed at a simply supported (S), a clamped (C) and a free (F) edge are: 

Simply supported (S) σxx=0; v=w=0; on x=0 and  a; and σyy = 0; u = w = 0; on y = 0 and b; 

Clamped (C)  : u = v = w = 0; on x = 0, a and y = 0, b; 

Free (F) : σxx = σyx = σzx = 0; on x = 0 and a;  and σyy  = σxy  = σzy = 0; on y = 0,  b 

The analysis is performed for E-FGM and for various values of the volume fraction exponent (n) in P-FGM and 

S-FGM. The results are presented in terms of non-dimensional parameters i.e. non-dimensional deflection (  ̅̅ ̅ , 
nondimensional tensile stress (  ̅̅̅̅   and shear strain (exy). 

The various non-dimensional parameters used are: 

Non-dimensional deflection   ̅̅ ̅     (100 Em h
3
 uz) / (1-

2
) a

4
 po 

And non-dimensional stress  ̅̅̅̅   h
2
 / po a

2
 

where ‗uz‘  is deflection, ‗σ‘ is stress, ‗‘ Poisson‘s ratio (0.3). 

 

6.1 Non-dimensional deflection (  ̅̅ ̅  
 Figure 6, Figure7and Figure 8shows the comparative bar charts of non-dimensional deflection uz for 

various boundary conditions of a square plate under uniformly distributed load for P-FGM, S-FGM and E-FGM 



Analysis of Functionally graded material plate under transverse load for various boundary  

www.iosrjournals.org                                                             52 | Page 

respectively. In case of P-FGM and S-FGM the comparison of various values of volume fraction exponent (n) 

have been presented. In case of E-FGM a single graph is obtained. 

 

 
Figure6: Non-dimensional deflection uz for various boundary conditions (P-FGM) 

 
Figure 7: Non-dimensional deflection uz for various boundary conditions (S-FGM) 

 

 
Figure8: Non-dimensional deflection uz for various boundary conditions (E-FGM) 

 

It can be observed that the isotropic ceramic plate has the lowest deflection for all the boundary 

conditions considered here, and the isotropic metallic has the largest deflection. The deflections become higher 

with increasing n. This is due to the fact that the bending stiffness is the maximum for ceramic plate, while 

minimum for metallic plate, and degrades continuously as n increases. It is also found that the maximum 

deflection occurs for simply supported - free (SSFF) boundary conditions and minimum for clamped (CCCC) 

boundary condition for all the cases considered here. The non-dimensional deflection for S-FGM remains closer 

for various values of ‗n‘ as compared to that of the P-FGM. 

 

6.2 Non-dimensional tensile stress (  ̅̅̅̅   
Figure 9, Figure 10 and Figure 11 shows the variation of non-dimensional tensile stress (σx) for various 

boundary conditions of a square plate under uniformly distributed load for P-FGM, S-FGM and E-FGM 

respectively. In case of P-FGM and S-FGM the comparison of various values of volume fraction exponent (n) 

have been presented. In case of E-FGM a single graph is obtained. 
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Figure9: Non-dimensional tensile stress (σx) for various boundary conditions (P-FGM) 

 
Figure 10: Non-dimensional tensile stress (σx) for various boundary conditions (S-FGM) 

 

 
Figure 11: Non-dimensional tensile stress (σx) for various boundary conditions (E-FGM) 

 

It can be observed that the isotropic ceramic plate has the lowest tensile stress for all the boundary 

conditions considered here, and the isotropic metallic has the largest tensile stress. The tensile stress becomes 

higher with increasing n. This is due to the fact that the bending stiffness is the maximum for ceramic plate, 

while minimum for metallic plate, and degrades continuously as n increases. It is also found that the maximum 

tensile stress occurs for clamped - free (CCFF) boundary conditions and minimum for simply supported – 

clamped (SCSC) boundary condition for all the cases considered here. The non-dimensional tensile stress for S-

FGM remains closer for various values of ‗n‘ as compared to that of the P-FGM. 

 

6.3 Shear strain (exy) 

Figure 12, Figure 13 and Figure 14 shows the variation of Strain (exy) for various boundary conditions 

of a square plate under uniformly distributed load for P-FGM, S-FGM and E-FGM respectively. In case of P-

FGM and S-FGM the comparison of various values of volume fraction exponent (n) have been presented. In 

case of E-FGM a single graph is obtained. 
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Figure 12: Shear Strain (exy) for various boundary conditions of a square plate (P-FGM) 

 
Figure 13: Shear Strain (exy) for various boundary conditions of a square plate (S-FGM) 

 
Figure 14: Shear Strain (exy) for various boundary conditions of a square plate (E-FGM) 

It can be observed that the isotropic ceramic plate has the lowest Strain (exy) for all the boundary 

conditions considered here, and the isotropic metallic has the largest Strain (exy). The Strain (exy) becomes 

higher with increasing n. This is due to the fact that the bending stiffness is the maximum for ceramic plate, 

while minimum for metallic plate, and degrades continuously as n increases. It is also found that the maximum 

Strain (exy) occurs for simply supported - free (SSFF) boundary conditions and minimum for clamped (CCCC) 

boundary condition for all the cases considered here. The shear strain (exy) for S-FGM remains closer for various 

values of ‗n‘ as compared to that of the P-FGM 

 

VII. Conclusions and future scope 
Mechanical deformation of functionally graded ceramic-metal plates under various boundary 

conditions is analyzed. Convergence and validation studies have been carried out to inculcate the accuracy of 

the present formulation. The results show a good agreement with those available in the literature. It is observed 

that 

(a) The bending response of the functionally graded plate is intermediate to those of the metal and the 

ceramic plate. This behavior is found to be true irrespective of boundary conditions.  

(b) The bending response for S-FGM remains closer for various values of ‗n‘ as compared to that of the P-

FGM.  

(c) The bending response of E-FGM is nearer to the behavior of P-FGM. The work can be extended for 

variation in load, loading pattern and other ceramic metal combinations. Also thermal environment may 

be imposed in addition to the mechanical loading. 
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