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Abstract:The sophistication and size of the models of the finite element method are continually growing. 

Hence, there is a rising need for faster solvers. The speed of any algorithm varies depending on the analyzed 

system’s scale and the features of the coefficient matrix, that accordingly affect the selection of the proper 

solver depending on various standards, for instance, the required storage, the results’ accuracy, and solving 

speed. However, these demands are, unfortunately, usually contradictory; there is no single procedure which 

outperforms the other techniques in all cases. The two main classes of solving techniques are Direct and 

Iterative (Indirect) solvers. Generally, direct methods tend to need many computations and large memory space, 

especially for significantly large problems, so a long time is elapsed during the analysis process. Consequently, 

an iterative solver, in such cases, is more desirable. Besides, such solvers are generally simpler to program. The 

main objective of this study is to provide a historical background in addition to shedding light on the latest 

research literature of several well-known classical and modern iterative techniques that have been used in 

solving myriad engineering problems. In this paper, the difference between both classes of the direct and 

iterative finite element solvers is explained; showing their strengths and weaknesses, besides mentioning the 

proper cases to use each class. Some examples of well-known direct and indirect techniques are mentioned. 

Then, attention is paid to the iterative techniques till the end of the paper; the eminent methods within the two 

main classes of iterative solvers, classical and modern methods, are mentioned with providing a historical 

background and literature review for them. 

Keywords: Finite element method, Direct solvers, Indirect solvers, Classical iterative methods, Modern 

iterative methods 
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I. Introduction 
Among the famous numerical techniques for solving various engineering problems, is the finite 

element method (FEM), where we solve a set of matrix linear equations in the form of [K]{u} = {f}. Here [K] 

refers to the stiffness matrix of the structure, which is the coefficient matrix, {f} refers to the forces vector 

applied to the structure, and {u} refers to the deformations vector which is the set of unknowns to solve for[1]. 

In general, stiffness matrices are symmetric matrices of order n×n which depends on the number of DOFs in the 

structure that may be thousands to millions of DOFs. Reaching the solution to the above-mentioned system of 

linear equations is usually the most time-consuming and exhausting part through the entire process[2]. 

The use of iterative equation solvers in commercial finite element software has been steadily growing. 

Performing a finite element analysis is typically accomplished in three stages, preprocessing, analysis, and 

postprocessing. The analysis stage is by far the most time-consuming, and the efficiency of the equation solver 

utilized is a decisive factor in determining the computation time and storage requirements for the analysis, and 

therefore has a significant effect on the analysis costs, especially in case of large problems. 

II. Solvers Classification 
There are two main classes of solvers (algorithms) that are used to find the values of the unknowns 

which are Direct methods and Iterative (Indirect) methods[2], [3]. 
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2.1 Direct methods 

The direct methods find the exact values of the unknowns where there are no errors except the error of 

the round-off due to the machine [4]. The direct solution methods are guaranteed to reach a solution, as long as 

the model of the structure is set up properly[5]. 

A direct solver is commonly used in structural analysis using commercial packages because finding 

solutions using direct solvers is stable without being influenced by the coefficient matrix numerical 

characteristics so the direct solver can be more robust than the iterative solver[2]. However, it generally tends 

to need remarkably large storage demands and a great amount of calculation especially for huge problems 

because a large number of equations are solved simultaneously. Thus, it spends a long run time. Accordingly, in 

these cases, an iterative solver that requires relatively less memory space is more desirable[3]. 

Depending on the way of the connection of the elements together, the coefficient matrix, i.e., stiffness 

matrix [K] is usually very sparse;a lot of the items have a value of zero[5]. What is usually cared about when 

using a direct solver, is the proper usage of the sparsity of the stiffness matrix, [K]. Since a zero value has no 

contribution to the solution, so most solution methods are programmed in some approach or another to disregard 

the zero terms. The amount of computation and storage requirements significantly vary depending on the 

technique of utilizing the sparsity[3]. A method may need a small amount of memory space to store the matrix, 

however, require optimization to attain the least demand for memory space, whereas another method may use 

more variables for matrix storage, and hence need more memory space, but be faster overall[5]. 

There are different techniques for direct methods such as Gaussian elimination, Gauss-Jordan 

Elimination, and other decomposition methods like Cholesky decomposition, Incomplete Cholesky 

factorization, LU factorization, LDU decomposition, LDL
T
 decomposition, QR decomposition, etc. 

Sometimes, using the elimination technique is annoying especially with large sparse problems [6] 

because the matrix sparse characteristics are lost since it results in some elements, originally zero, becoming 

nonzero as elimination proceeds. Not only does this increase the storage problems on computers, but also 

computing times for elimination are increased[7]. 

2.2 Iterative methods  

Iterative solvers are used mostly in research related programs, especially in nonlinear analysis. Most 

commercial packages utilize direct solvers, while some commercial packages include additional iterative 

solvers. 

In the iterative solvers, an initial guess for the solution is assumed. By substituting this assumed 

solution in the system of linear equations, a better estimate is attained for each unknown. Then, this process is 

successively repeated until the solution reaches an almost constant value, i.e., no longer changes[5]; hence, the 

errors are minimized until convergence is reached through iterative calculations. It is crucial to quickly reduce 

the convergence errors through a small number of iterations[3]. For well-conditioned problems, the 

convergence should be reasonably monotonic. If the problems are not well-conditioned, thus the convergence 

shall be slower. Oscillatory performance of an iterative solver often indicates that the problem isn‘t 

appropriately set up, for example, when the problem isnot sufficiently constrained[2]. 

Iterative methods, in contrast to direct methods, reach the solution gradually step by step, instead of 

through one large computational step[2]. Eventually, iterative methods result in approximate solutions where 

some residual errors exist; the values of these residual errors depend on the demanded accuracy. The solution 

accuracy is regulated by the tolerance value of the convergence; a smaller tolerance results in a solution with 

higher accuracy but it may take more iterations[5]. 

The iterative solvers have a great advantage which is their memory usage, as it is significantly less than 

that of direct solvers for problems of the same size[2]. Iterative solvers, generally, are simpler to program. They 

are also capable of solving an n x n system of linear equations without finding the matrix inverse of the 

coefficient matrix, stiffness matrix [K] in finite element, and without needing to store the matrix [K] entirely, 

which results in saving the time requirements and memory space. However, it should be cautioned, as 

mentioned in [3], that iterative solvers may not result in the desirable solutions on account of the coefficient 

matrix numerical characteristics, or the quantity of iterative calculation may possibly become significant in 

reaching converged solutions[3]. Thus, the iterative solvers are considered the most appropriate procedures for 

solving huge models of sparse and large coefficient matrices, providing they are able to converge[5]. 

It can also be possible to carry out quick re-solutions in which small structural modifications in the 

system have been made, through starting the iterations with the values of the variables obtained from the 

analysis conducted for the original structure[7]. 

When using an iterative solver, sometimes a preconditioning procedure is applied before starting the 

iterative solution process to improve the stiffness matrix condition number. This can make a change to the entire 

behavior of the system depending on the preconditioning technique[1], [3]. A system having a low condition 

number means well-conditioned, while a high condition number means ill-conditioned[8]. 

The iterative techniques are commonly divided into two main categories which are:  
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 Classical (Stationary) (Relaxation) methods: Jacobi, Gauss-Seidel method, Successive Overrelaxation 

(SOR), Symmetric Successive Overrelaxation (SSOR), Moment Distribution by Hardy Cross, and Rotation 

Contribution method (Kani‘s Method). 

 Modern methods (Krylov subspace methods): steepest descent, Conjugate Gradient method (CG), 

Generalized minimal residual (GMRES), Minimal residual method (MINRES), Biconjugate Gradient 

(BiCG), and Multigrid method. 

 

III. Iterative Solvers Overview 
The performance of a solver changes depending on the size or scale of the system that is meant to be 

analyzed[3] as well as the properties and characteristics of the coefficient matrix, that in turn affect the selection 

between the solvers. There is no single procedure which outperforms the other techniques in all cases. 

A method is evaluated whether it is worthy or not depending on some standards such as the accuracy of 

the solution worked out, the required amount of computations, and the required storage on the computer. 

Unfortunately, these necessities are usually contradictory, thus it is still critical to realize new effectual 

solutions. 

Although the single iteration of the classical iterative methods generally takes a shorter time than that 

of the modern methods, as classical methods have simpler algorithms (steps), the modern methods are generally 

faster as they take a fewer number of iterations till convergence. 

3.1 Classical iterative methods 

Numerous researches had been conducted to study and scrutinize many classical iterative techniques. 

Some of these techniques are discussed hereunder. 

3.1.1 Jacobi and Gauss-Seidel (GS) methods 

The Jacobi iterative method is named after the German mathematician Carl Gustav Jacob Jacobi 

(1804–1851). The Gauss-Seidel technique, which is the modification of Jacobi technique, is named after both 

Carl Friedrich Gauss (1777–1855) and Philipp L. Seidel (1821–1896). 

A comparison between Jacobi iterative technique and Gauss-Seidel iterative technique was conducted 

by A. I. Bakari and I. A. Dahiru [9]. The Jacobi iterative method makes two assumptions; the first one is that the 

given system has a unique solution, while the second one is that the coefficient matrix has no zero items on its 

main diagonal. They mentioned that if any of the entries of the diagonal is zero, then the rows or columns 

should be interchanged to get a coefficient matrix which has no zero entries on its main diagonal. 

In the Jacobi technique, the obtained values in the n
th

 iteration remain unchanged till the entire n
th

 

iteration has been calculated. On the other hand, in the Gauss-Seidel technique, the new values of the variables 

obtained in the n
th

 iteration are used in the same iteration once they are known. That is, as soon as we have 

obtained from the first equation the value of the first variable, this value is then utilized in the second equation 

in order to get the new value of the second variable. Similarly, the new value of the second variable and that of 

the first variable are utilized in the third equation in order to get the new value of the third variable and so on[9]. 

Moreover, A. I. Bakari and I. A. Dahiru [9] discussed the convergence of these two methods. The 

convergence rate of iterative techniques shows how fast the error approaches zero with the increase in the 

number of iterations. 

The coefficient matrix [A] is a convergence matrix provided that ρ(A) < 1, where ρ(A) is the spectral 

radius of [A]. This condition is achieved for both Jacobi method and Gauss-Seidel method on condition that the 

coefficient matrix [A] is diagonally dominant. The matrix is called a diagonally dominant matrix in case that the 

absolute value (magnitude) of the entry on the diagonal in each row is larger than or equal to the sum of absolute 

values (magnitudes) of non-diagonal entries in the same row, as provided by (1). Moreover, the matrix is strictly 

diagonally dominant provided that the condition shown in (2) is valid [10]: 

a aij iij i



    (1) 

a aij iij i



   (2) 

Where; a refers to terms of the coefficient matrix [A], i is the row number in [A], and j is the column number in 

[A]. 

Their results showed that Gauss-Seidel iterative technique outperforms Jacobi iterative technique with 

respect to the accuracy and the required number of iterations for convergence to occur; Gauss-Seidel is more 

accurate and converges faster than Jacobi. 

Liu Hongxia and Feng Tianxiang [11] studied the convergence conditions of Jacobi method and Gauss-

Seidel method. After that, the iterative times of both methods were discussed. Then, the formula for the 
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estimated iterative times was obtained, because beforehand there were obvious differences between the 

estimated iterative times and actual iterative times [12]. Lastly, a numerical example was calculated by both 

methods and the results showed the estimated iterative times and the actual iterative times were basically equal. 

Davod Khojasteh Salkuyeh [13] mentioned that both Jacobi and Gauss-Seidel iterative algorithms are 

considered stationary iterative techniques for solving a system of linear equations. There are some modern, 

popular iterative techniques such as GMRES[14] and Bi-CGSTAB[15] algorithms which are more effectual 

than Jacobi and Gauss-Seidel iterative methods. However, when these stationary methods are combined with the 

methods which are more efficient, e.g., as a preconditioner, they can be quite successful. Davod proposed a 

generalization of both Jacobi and Gauss-Seidel methods and studied their convergence. Then, he gave some 

numerical experiments to show their efficiency. It has been shown that if the coefficient matrix [A]is irreducibly 

diagonally dominant or if it is strictly diagonally dominant (SDD), the associated iterations of Jacobi method 

and Gauss-Seidel method converge for any initial guess [16]. Also, if [A]matrix is symmetric positive definite 

(SPD), the Gauss-Seidel approach also converges for any initial guess [17]. 

Finally, Davod concluded that the new techniques ―Generalized Jacobi (GJ) method and Generalized 

Gauss-Seidel (GGS) method‖ are convenient for sparse matrices like matrices that arise from discretization of 

partial differential equations (PDEs). Also, his numerical results showed that the new generalized techniques 

have been more effectual than conventional Jacobi method and Gauss-Seidel method. 

3.1.2 Successive Overrelaxation (SOR) method 

Successive Overrelaxation (SOR) was developed by both H.Frankel [18] and David Young [19] in 

1950. It was developed by adding a modification to the iteration model of Gauss-Seidel. SOR iterative algorithm 

is considered as one of the effective stationary iterative methods for solving a system of equations which is 

sparse and of large scale. 

Ruixia Cui and Mingjun Wei [20] discussed astringency judgment conditions for Successive 

Overrelaxation (SOR) iterative algorithm and the importance of the proper selection of the convergence factor 

(ω). They provided then a MATLAB program based on the SOR iterative algorithm. They proved that the 

convergence rate of SOR iterative technique is faster than that of the Jacobi and Gauss-Seidel iterative 

techniques. They mentioned that the SOR iterative technique can be broadly applied in practice, essentially used 

for finding solutions to sparse systems of linear equations, so greatly decreasing computations and required 

internal memory of the computer. Accordingly, calculation efficiency increases. 

T. Mayooran and Elliott Light [21] took a look at the basics of Successive Overrelaxation iterative 

method. Then, they applied the SOR method to a real-world problem which is solving the heat-equation while 

constant boundary temperature is being applied to a flat plate.They mentioned that SOR iterative method has 

applications in linear elasticity, mathematical programming, Fluid Dynamics and machine learning, etc. Among 

the cases of applications of SOR iterative technique in Dynamics are the study of turbulent flows, steady heat 

conduction, chemically reacting flows or boundary layer flows. 

For [A] {x} = {b}, that is a system of linear equations, where {b} is the constants‘ vector, {x} is the 

unknowns‘ vector, [A] is the coefficient matrix; 

 The iterative formula of Jacobi iterative method is given by (3): 
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 The iterative formula of Gauss-Seidel iterative method is given by (4): 
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 The iterative formula of Successive Overrelaxation iterative algorithm is given by (5): 
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Where; n is the number of unknowns; k is the order of the iterations; i and j are the order of rows and order of 

columns in matrix [A] respectively; x, a, and b refer to terms of the unknowns vector, the coefficient matrix, and 

the constants vector respectively. ω is called Relaxation Factor. The value of ω is generally greater than unity, 
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however, the successive overrelaxation (SOR) formula (5) gives the formula (4) of the Gauss-Seidel technique 

when ω equals unity. 

The convergence is improved because the value of the variable at each particular iteration is formed of 

a combination of the newly calculated value and the old value. In other words, the SOR finds the new estimated 

value through multiplying the difference between both the new value and the preceding one by the relaxation 

factor (ω), then adding this scaled difference to the preceding value. Hence, the SOR iterative method resembles 

the Gauss-Seidel iterative method except that SOR uses the scaling factor (ω) to lessen the approximation error. 

When ω equals unity, as mentioned previously, the SOR formula turns into the formula of Gauss-

Seidel method. However, when ω is less than unity, it leads to the under-relaxation method, while at ω greater 

than unity, it becomes the over-relaxation method. 

Generally, the value of relaxation factor ω required to attain a minimum number of iterations ranges 

from 1 to 2; but this value cannot be selected in advance, apart from some special cases [21]. The under-

relaxation method (at ω< 1) usually requires a larger number of iterations compared to that of the Gauss-Seidel 

method. Nevertheless, the under-relaxation method is sometimes needed to reduce the rate of convergence in the 

cases when a value of scaling factor ω that is greater than or equal to unity leads to divergence. 

If [A] is a symmetric positive definite matrix, then the convergence is guaranteed with the successive 

overrelaxation technique for any chosen initial value of 𝑥0as long as 0 <ω< 2 [21]. 

3.1.3 Accelerated overrelaxation (AOR) method 

Apostolos Hadjidimos [22] clarified the Accelerated Overrelaxation (AOR) method which is a 

technique for the numerical solution of the systems of linear equations. The technique is a two-parameter 

generalization of the SOR technique such that when the two involved parameters are equal, the developed 

technique coincides with the Successive Overrelaxation (SOR) method. Finally, he gave a numerical example to 

show the superiority of AOR method. 

Hadjidimos mentioned that the powerfulness of AOR compared to the other well-known techniques, 

such as SOR, is due to the presence of two parameters rather than usually at most one. Full exploitation of the 

existence of the two parameters would provide approaches that would converge faster than other techniques of 

the same type. Nevertheless, he mentioned that the determination of the optimum values of the acceleration and 

overrelaxation parameters was still a matter that needs further investigation. 

Furthermore, sufficient conditions for convergence of the Accelerated Overrelaxation (AOR) technique 

have been considered by many other authors. In addition, to improve the rate of convergence of the AOR 

technique, the preconditioned AOR (PAOR) technique has been considered by several authors. 

3.1.4 Kani’s Method and Moment Distribution method 

3.1.4.1 Historical background and relaxation concept 

Classical structural analysis methods such as the Rotation Contribution method (Kani‘s Method) and 

Moment Distribution Method (Hardy Cross method) can be handy in quick and approximate analyses. They can 

be used for structures‘ primary analysis and also controlling the results of the computer programs. 

3.1.4.1.1 Analysis by Moment Distribution method 

In 1930, Hardy Cross [23] proposed the Moment Distribution method that is also known as method of 

Hardy Cross. From the 1930s and until the computers began to be extensively used in the analysis and design of 

structures, the Hardy Cross method was the most broadly practiced method. 

It provides a convenient tool for analyzing statically indeterminate structures, e.g., Beams and Frames, 

through manual calculations. The Cross approach has been taught in many universities as it has an easy 

interpretation. The method takes only flexural effects into consideration and disregards axial and shear effects. It 

could be used for simple programming in structural analysis, where the end moments of members are considered 

as the unknowns. This is principally an iterative process. It does not involve solving a system of simultaneous 

equations, as in the slope deflection method, providing the structures do not undergo transverse displacements, 

i.e., Sway motion. 

It includes artificially restraining temporarily all rigid joints against rotations and calculating the 

bending moments produced by external loads, known as fixed end moments, and that is for all members. These 

moments at the joints of the structure in the original case without restraints are unbalanced. So as to equilibrate 

the joints, they are then released successively one by one. The unbalanced moments are then distributed at each 

released joint to all ends of the members interconnected at that joint proportionally to the corresponding 

stiffness of members. Certain factors of the distributed moments are transferred to the other end of each member 

(temporarily, rotationallyrestrained end) forming what is called carried-over moment. 

Then, the released joint becomes restrained temporarily again before proceeding to the following joint. 

The same operations are applied at each joint until all the joints are concluded;thus, one cycle of operations is 

completed. The cycle is then repeated successively for a number of times until the values of the unbalanced 
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moments become negligible or till the obtained values are within the required accuracy. The final end moments 

of the members are the summation of all the distributed incremental moments [24]. End shear forces for the 

members are also obtained through applying the static equilibrium equations. 

The method of Moment Distribution is also a displacement method for structural analysis. The Moment 

Distribution method in case of sway structures requires forming algebraic equations and solving them with a 

fewer number of unknowns. 

3.1.4.1.2 Analysis by Kani’s Method compared to Moment Distribution 

Gasper Kani [25] introduced the Rotation Contribution method that is also known as Kani‘s Method. 

This method uses an iterative technique to solve the system of equations developed by the slope deflection 

method [26]. 

The Rotation Contribution method is self-correcting, to be exact, the error in a cycle—if any—is 

automatically corrected in the subsequent cycles provided that the distribution factors and fixed end moments 

have been determined correctly. Only the last cycle needs to be checked so the checking is easier. The 

convergence is generally rapid. It leads to the final solutions through just a small number of iteration cycles 

[27]. 

In Hardy cross method, end moments of the structural members, the unknowns, are obtained through 

iterating on their changes, whereas in Kani‘s Method, the iterations are performed on the unknowns themselves 

[27]. 

3.1.4.2 Research in Kani’s Method and Moment Distribution method 

Behravesh and Kaveh [26] described the relationship between Kani‘s and Hardy Cross approaches and 

a numerical iterative technique. They showed that the calculation trends— in both techniques—are like the 

Jacobi iterative procedure. A study of Volokh [24] also shows the correlation of Hardy Cross technique to the 

Jacobi iterative approach. 

P. R. Patil, M. D. Pidurkar, and R. H. Mohankar [27] provided a comparison between both Kani‘s 

Method and Moment Distribution method through the analysis of a 2D single-bay portal frame for the case of 

vertical loading only. They deduced the following: 

 The Final End Moments calculated by Kani‘s Method, for the considered portal frame, generally match 

with those calculated by Moment Distribution method. 

 Only 3-4 iterations are enough while using Kani‘s Method, that is somewhat a relatively small number 

of iterations compared to that of Moment Distribution method, for the considered portal frame. 

 Kani‘s Method is self-correcting. 

A.S. Agrawal and U.S. Badgire [28] solved a 2D rigid jointed portal frame through using a simplified 

approach rather than the tedious calculations of the conversion factor and displacement factor. They separated 

non sway and sway analyses and calculated the final moments using ratio of the sway force and arbitrarily 

assigned sway force. The reason for their study is that the analysis of a portal frame that is rigidly jointed 

contains tedious calculations and much complication by using conversion factor and displacement factor in 

Kani‘s Method as displacement factor is required during the sway analysis. Their study showed that the 

incorporation of the simplified approach technique in Kani‘s Method makes it easier and quicker and decreases 

the tedious calculations since there is no need for the displacement factor and the conversion factor. Moreover, 

they mentioned that Simplified Approach technique is the same for the case of asymmetry in column height, 

asymmetric moment of inertia, and asymmetric support condition. 

3.1.5 A new Jacobi-based iterative method for classical analysis of structures 

Seyed M. Mirfallah and M. Bozorgnasab [10] provided a new technique for the classical computing. 

They named their proposed approach "Slope Distribution Method‖ (SDM). The SDM is an iterative technique 

that is based on successive computational cycles which are repeated till convergence.  

SDM is based on Jacobi iterative procedure to find the values of the unknowns in the equations‘ system 

that is produced by the slope-deflection technique where the effects of shear and axial deformations are 

neglected, as their effect is relatively small compared to that of bending deformation. In SDM, the structural 

deformation values are attained without forming or solving the linear equations system which is its merit 

compared to the slope-deflection technique. 

In contrast to both the Moment Distribution technique and Kani‘s Method, the distribution as well as 

the carry-over procedures are merged, thus only nodal slopes (rotations) are distributed rather than distributing 

and transmitting the bending moments at different members' ends that are attached to each rigid node. 

Accordingly, the analysis parameters and analysis time are reduced as the number of unknowns is dependent on 

the number of nodes of the structure and not on the number of members that are connected to each node. 

Consequently, the proposed procedure is less time-consuming than the methods of slope-deflection, Moment 

Distribution, and Kani‘s Method. 
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It should be noted that the sway displacement of a member is included within the proposed method in 

the form of sway rotation (lateral rotation) of the member. Finally, by obtaining the values of lateral rotation and 

nodal rotation of the story, the end moments and shear forces of the members can be calculated. 

Additionally, they extended it to a matrix formulation in order to make the technique applicable and 

usable in computer software as only a matrix equation for unknowns is used.Moreover, they mentioned some 

special cases that SDM can analyze; these cases are: 

 Frames with inclined columns. 

 Frames with nodal vertical sway displacement. 

 Structures that contain any non-prismatic member, however by defining some basic parameters 

(corresponding coefficients). 

 Dual lateral load resisting systems. In other words, moment-resisting frames that contain other lateral 

load resisting elements, for instance, bracings. By applying some modifications, the lateral stiffness of 

the bracing members could be included in SDM equations. 

3.2 Modern iterative (Krylov subspace) methods 

3.2.1 Introduction and historical background 

Krylov subspace techniques have undeniably become a popular and useful tool that is used for solving 

large groups of linear equations and nonlinear equations and finding eigenvalues, generalized eigenvalues 

besides singular values of matrix problems of large scale. Their generality is one of the explanations for their 

popularity. They are based on processes of projection onto Krylov subspaces. The approximations to solution 

are formed by minimizing residuals over the formed subspace. 

The idea is named after naval engineer and Russian applied mathematician Alexei Nikolaevich Krylov 

(1863-1945), who published a paper in 1931 about it. 

3.2.2 Iterative methods within this class 

Among the well known Krylov subspace iterative methods are: 

 Arnoldi: it is for solving eigenvalue problems. 

 Lanczos: it is for solving eigenvalue problems. 

 Conjugate Gradient (CG): it is the prototypical technique in this class; it is used for solving a system whose 

coefficient matrix [A] is symmetric positive-definite. 

 Induced Dimension Reduction (IDR): it was presented originally to solve linear equations systems. 

 Minimal Residual (MINRES): it is used in the case of symmetric and possibly indefinite matrices. 

 Generalized Minimum Residual (GMRES): it is used in the case of non-symmetric matrices. 

 Biconjugate Gradient (BiCG): it is used in the case of systems which are non-symmetric and/or indefinite. 

 Biconjugate Gradient Stabilized (BiCGSTAB): it is used in the case of non-symmetric matrices. It is akin to 

the Conjugate Gradient Squared (CGS). The advantage of the BiCGSTAB is its limited storage needs, yet 

there are several problems for which BiCGSTAB technique does not work well. For these problems, 

GMRES method has become a better choice. 

 The Conjugate Gradient Squared (CGS): it is a development of BiCG technique. It is an iterative technique 

for solving non-symmetric systems of linear equations. 

 Quasi Minimal Residual (QMR): it is an iterative technique for solving non-symmetric systems of linear 

equations. QMR uses look-ahead procedures to avoid breakdowns within the underlying Lanczos process, 

that makes it more robust compared to BiCG. 

 Transpose-free QMR (TFQMR): it is an iterative technique for solving non-symmetric systems of linear 

equations. Conceptually, it is derived from CGS method.When the CGS technique shows irregular 

convergence, the TFQMR technique can produce much smoother and almost monotonic convergence 

curves. Nevertheless, the close relationship between CGS and TFQMR technique suggests that the overall 

convergence speed is similar for both approaches. However, the TFQMR method, in some cases, may 

converge faster than CGS method. 

3.2.3 Conjugate Gradient (CG) method 

This section is designated to shed light on the CG method as it is a well-known Krylov subspace 

method and a prototypical technique of this class. 

3.2.3.1 Introduction 

The Conjugate Gradient iterative method (CG) was originally devised by Hestenes and Stiefel in 1952 

[29]. As mentioned previously, it is an iterative technique for solving a system of linear equations whose 

coefficient matrix [A] is a symmetric positive definite matrix.  

As mentioned in [30], a quadratic form is a quadratic, scalar function of a vector by the form of (6): 
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f(x) = 
1

2
 x

T
Ax - b

T
x + c        (6) 

Where A is a matrix of nxn order, x and b are n-vectors, and c is a constant. If A is a symmetric, positive-definite 

matrix, f(x) is minimized through the solution to Ax = b. 

The Conjugate Gradient is the archetype of Krylov space solvers which is an orthogonal projection 

technique and satisfies a condition of minimality. In this method, the step taken along each direction is chosen in 

order to minimize a function which measures the residual along that direction. The major feature of CG is that 

its search directions are mutually conjugate, and hence the finite termination property is given[31]. 

The rate of convergence of CG technique is known to be reliant on the eigenvalues‘ distribution of the 

coefficient matrix [A]. However, CG method does not require previous knowledge of the eigenvalues; it 

implicitly takes into account the eigenvalues‘ distribution. Thus, estimation of over-relaxation parameter is not 

needed[32]. 

Conjugate Gradient methods are also used for solving nonlinear equations and unconstrained 

optimization, especially in large-scale cases. As they have the attractive practical factors concerning low 

memory requirement and simple computation as well as interesting theoretical features of the curvature 

information and also strong global convergence [33]. 

In fact, the CG technique is not among the most robust or fastest optimization algorithms available 

today for nonlinear problems, however, it remains popular for mathematicians and engineers who are keen on 

solving large problems [34]. 

3.2.3.2 Historical background and literature review 

As mentioned in [31],[32]; Reid [35] ignited a lot of the subsequent development of conjugate gradient 

approaches for solving algebraic equations‗ systems; he showed that Conjugate Gradient method is a powerful 

iterative procedure for suitable systems. Moreover, the Conjugate Gradient technique was applied by Meijerink 

and Vorst [36] in conjunction with the incomplete Cholesky decomposition for M-matrices. They explained how 

to adjust a general system, for example, those derived from models of finite-element or finite-difference, into a 

'desirable' form which Conjugate Gradient could efficiently be applied to. This was achieved through 

preconditioning the equations system with an easily generated approximate coefficient matrix inverse. Since 

then, some more effective preconditioning techniques have been developed. 

A history and an extensive bibliography of CG method to the mid-seventies are given by Golub and 

O‘Leary [37]. Since then, most research has focused on nonsymmetric systems[30]. Barrett et al. [38] offered a 

survey of iterative methods for the solution of linear systems. 

A strongly implicit pre-conditioned CG procedure‘s form was considered by P. K. Khosla and S. G. 

Rubin [32]. The resulting iterative method was applicable to the sparse systems of difference equations that arise 

from boundary value problems. Moreover, quasi-Newton methods were introduced to accelerate the 

convergence rate of strongly implicit finite-difference iterative methods. The resulting procedures were quite 

fast and could easily be programmed. 

D.A.H. Jacobs [31] described a generalization to complex systems by developing Fletcher‘s work [39]. 

The Methods were improved on 'symmetrization', solving normal equations for asymmetric cases, besides 

expanding complex systems to real systems of twice the order. Jacobs has shown and proved the extension of 

biCG technique to complex systems of equations, hence the new method was called complex biconjugate 

Gradient. The author proved that the Method was effective. 

Shengwei Yao, Xiwen Lu, and Zengxin Wei [34] proposed a CG technique which resembles Dai-Liao 

Conjugate Gradient technique [40] but had relatively stronger convergence properties. The proposed technique 

owns the sufficient descent condition. It is also globally convergent under the line search of strong Wolfe-

Powell (SWP) for general function. The provided numerical results showed that the proposed technique was 

remarkably efficient for the test problems. 

Can Li [41] further studied the CG technique for unconstrained optimization and focused his attention 

on the descent CG technique. The modified Conjugate Gradient method that has been presented had an 

interesting feature since the direction was always a descent one for the objective function. Additionally, the 

property was independent of the used line search. The author proved that, under mild conditions, the modified 

CG technique with Armijo-type line search was globally convergent. He also presented some numerical results 

that showed the efficiency of the proposed technique. 

XiaoPing Wu, LiYing Liu, FengJie Xie, and YongFei Li [42] proposed a new nonlinear CG formula, 

that satisfies the condition of sufficient descent, for solving unconstrained optimization problems. The 

algorithm‘s global convergence was implemented under weak Wolfe line search. This new algorithm was shown 

to be competitive with other earlier algorithms by some numerical experiments. 

Xiangrong Li, Xiaoliang Wang, Zhou Sheng, and Xiabin Duan [33] presented a modified CG algorithm 

by line search technique with acceleration scheme for the case of nonlinear symmetric equations. Moreover, the 

proposed technique not only owns descent property but also possesses global convergence within mild 
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conditions. Numerical results also show that the presented technique is much more effective compared to the 

other approaches for the test problems. 

3.2.3.3 Ill-conditioning and round-off error 

The Conjugate Gradient reaches the exact solution after a number of n iterations. Provided that there is 

infinite floating point precision, the required number of iterations to yield an exact solution will be the number 

of distinct eigenvalues at most[30], [43]. Since the available number of digits is limited, round-off errors occur 

through each numerical operation. Digits are lost when small numbers are added to large numbers, and this may 

be caused via large differences within the scale of unknowns. Accordingly, orthogonality among the computed 

vectors is usually lost very quickly, accompanied by a consequent loss of linear independence. 

In practice, the accumulated floating point round-off error can delay the convergence, as the solver may 

take more than n steps, or even fail to converge occasionally; this is as a result of gradually losing the residuals‘ 

accuracy. This effect can be alleviated by periodically using the equation ri=b-Axi to recalculate the correct 

residuals[30]. 

Nonetheless, a poorly conditioned coefficient matrix [A] is the main cause of rounding error. 

Therefore, Preconditioning is the solution to this round-off error[43]. 

3.2.3.4 Preconditioning 

Generally, it is accepted that CG technique should almost always be used with an appropriate 

preconditioner, especially for large-scale applications. Several preconditioners have been developed, yet some 

of these preconditioners are quite sophisticated[30].  

The general concept underlying any preconditioning approach for the iterative solvers is to alter the ill-

conditioned system which is A x = b, whose condition number is high, in such a way in order to obtain an 

equivalent system that is A  x  = b  for which the iterative technique converges faster as the system‘s condition 

number is improved. 

There is a standard approach that is to use a matrix [M] which is nonsingular, then rewrite the system 

as M
-1

 A x = M
-1

 b. The preconditioner matrix [M] needs to be selected such that the modified coefficient matrix, 

A =M-1A, will be better conditioned for the CG technique compared to the original coefficient matrix [A]. 

A perfect preconditioner will be M=A where M
-1

A is equal to the identity matrix. However, the 

preconditioning step is, unfortunately, solving the system M x = b, accordingly this isn‘t a meaningful 

preconditioner at all[30]. On the contrary, the least effective preconditioner M = I which absolutely does 

nothing. Hence, in practice, it should be tried to get a preconditioner which is something in between[44]. 

Finding a convenient way of doing preconditioning may be sometimes a difficult task, however, it can 

likewise result in significantly impressive convergence results. It should also be taken into consideration that, in 

numerous times, conducting experiments is the only real methodology of determining which way of 

preconditioning works best[44]. 

IV. Conclusion 
Direct solvers generally tend to need remarkably large storage demands and a great amount of 

calculation, especially for huge problems. Thus, it spends a long run time. In these cases, iterative solvers that 

require relatively less memory space, are more desirable; they are also faster than direct solvers in solving such 

huge problems. Although the single iteration of the classical iterative methods generally takes a shorter time 

than that of the modern iterative methods, as classical methods have simpler steps (algorithms), the modern 

methods are generally faster as they take a fewer number of iterations till convergence. However, the classical 

methods are simpler to program and when they are combined with the modern methods, e.g., as preconditioners, 

they can be quite successful. Finally, it should be noted that the research in this field is always needed to attain 

new faster solvers or even improving the available methods by some modifications to overcome their weak 

points as there is no method that is the most suitable to be used in all cases and conditions. 
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