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Abstract:  Seamless artificial intelligence (AI) adoption into the contemporary medical frameworks has unlocked 

new opportunities in medical diagnosis, predictive analysis, and individualistic treatment planning. Nevertheless, 

the effectiveness of AI models largely depends on getting access to large, diverse, and high-quality data sets, 

which is becoming a challenging goal to achieve because of stricter privacy laws and due to institutional silos, as 

well as emerging use of multi-cloud systems by healthcare institutions. Aggregated data collection not only adds 

a risk of data loss but also, in many cases, goes against patient privacy standards stipulated or regulated by acts 

like the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection 

Regulation (GDPR). As studied in this research, Federated Learning (FL) is a decentralized and privacy-

protecting paradigm that enables secure medical collaboration through geographically and administratively 

decentralized healthcare facilities on various cloud platforms with heterogeneous configurations. FL allows 

several clients (e.g., hospitals, clinics) to use collective computation in training machine learning models, but not 

sharing raw data, thus maintaining data locality and data confidentiality. We suggest a holistic system capable 

of coupling FL into a combined solution of complex privacy-preserving frameworks like secure multi-party 

computation, differential privacy, and homomorphic encryption to offer end-to-end protection against internal 

and external threats. The proposed paper offers a strong system architecture that could be used in multi-cloud 

settings, whose issues will include data non-compatibility, communication expense, model convergence, and 

compliance policies. The proposed approach's performance, scalability, and security are analogously analyzed 

using real-world medical imaging and electronic health record (EHR) data, providing a thorough collection of 

experiments. These findings show that the federated model delivers close-to-accuracy with centralized ones, with 

much less risk involved in centralized data storage and transmission. Moreover, we prove the framework's 

flexibility with an alternative of different cloud service providers, proving that it can be applied in the real 

collaborative healthcare ecosystem. To sum up, the present work confirms that federated learning has the 

potential to become an ever-changing solution to the creation of secure, privacy-preserving, and regulation-

compatible AI in multi-cloud healthcare environments, leading to more morally-intelligent and higher-

performance medical AI applications. 

Keywords: Federated Learning, Privacy-Preserving AI, Multi-Cloud Computing, Healthcare Data Security, 

Collaborative Machine Learning 
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I. INTRODUCTION 
Over the past few years, the healthcare market has experienced an unheralded explosion of data-driven 

technologies, especially those fueled by artificial intelligence (AI) and machine learning (ML). These tools have 

greatly impacted clinical decision-making, diagnostics, predictive analytics, and patient-centered care. 

Nevertheless, these technologies' overall potential is underutilized because of one missing link, which is a limited 

capacity to access and utilize the medical data, large in scale, diverse, and high quality, that are scattered over 

different hospitals, laboratories, and research centers. Even more so, this issue is complicated by the presence of 

strict data privacy laws, including the Health Insurance Portability and Accountability Act (HIPAA) and the 

General Data Protection Regulation (GDPR) that censure the centralized exchange and processing of sensitive 

patient data (Mbonihankuye et al., 2019; Azbeg et al., 2022). Grid-based Learning (GL), and more recently 

Federated Learning (FL), have been proposed as a revolutionary way to solve this dilemma in that they allow 

decentralized training of ML models in a way that keeps the data from bottling up. In the case of FL, it is assumed 

that an individual healthcare facility controls its local data and maintains the global representation by exchanging 

only encrypted or anonymized updates. Such an approach does not pose much danger to privacy infiltrations but 

allows collaboration on a large scale. Xu et al. (2021) demonstrated the use of FL that could enable healthcare 

institutions to train deep learning models collectively without affecting patient privacy, representing a significant 

step toward privacy-sensitive AI. Yang, Liu, et al. (2019) continued to discuss FL's general architecture and scope 

to distributed systems and how it applies to dynamic environments such as healthcare and potentially real-time 

learning.  On the one hand, FL is not simple to use in healthcare despite these benefits. Among the most ubiquitous 

technical issues, we can count overcoming the non-IID (non-independent and identically distributed) phenomenon 

of healthcare data. Clinical data tends to differ extensively in different institutions regarding demographics, 

disease prevalence, device conformity, and data structures. Zeng et al. (2023) pointed out that these heterogeneities 

may badly affect convergence and precision of models, especially where global models do not work as 

generalizers across diverse groups of patients. Besides, distributed denodules share an implied vulnerability of 

observing model updates. As it was covered by Zhang et al. (2022), even anonymized gradients or model 

components can be reverse-engineered to divulge sensitive information about patients, and additional security 

measures should be incorporated into their functioning. 

The additional complexity is added by the increasingly widespread use of multi-cloud systems as a part 

of the healthcare system. Healthcare providers are multi-sourcing their cloud-based service providers, using more 

than one service provider, to maximise cost, performance, and compliance. This disjointed infrastructure, 

however, comes with its own set of challenges dealing with data consistency, interoperability, access control, and 

trust boundaries. As demonstrated by Chen et al. (2022), there is the potential of adopting multi-agent-based 

reinforcement learning to perform dynamic task offloading in a multi-cloud environment, as such systems can get 

quite complex. Kalyani and Rao (2016) have given a more comprehensive way to construct scalable and secure 

multi-cloud systems. They said protocols are required to coordinate workload and secure sensitive information on 

various platforms. With data privacy and cross-system collaboration, scientists have started adapting 

cryptographic practices into the federated frameworks. As an illustration, Rahman et al. (2020) proved how fully 

homomorphic encryption can be applied to enable computations to be carried out on encrypted information, 

thereby eliminating risks of exposing data to view even in the computation process. Torkzadehmahani et al. (2022) 

also gave an overview of privacy-preserving AI techniques in the biomedical informatics context, elaborating on 

topics of growing interest such as secure computation, differential privacy, and secure multi-party computation 

(SMPC) in the development of future AI systems. 

 

II. LITERATURE REVIEW 
Federated Learning (FL) has become a paradigm-shifting approach to machine learning since it has 

become an alternative method of co-learning model training without presenting sensitive information at risk. Raw 

data in traditional centralized learning models has to be pooled at one place, posing severe issues of privacy, 

security, and regulatory concerns, particularly in the medical field. Conversely, FL allows locally training 

distributed data sources, with only model parameters transferred to clients and a centralized server. Yang et al. 

(2019) were among the first ones to describe this idea and underline its appropriateness to be used when the 

sharing of data is limited, either because of confidentiality issues or legal restrictions. Healthcare is one of the first 

industries to adopt FL because of its rigid data privacy needs and medical data having a life and death impact. Xu 

et al. (2021) implemented FL in different health care applications, some being predictive modeling with electronic 

health records (EHRs), where the authors demonstrated better performance and privacy protection. They have 

shown that utilizing FL to aggregate cross-institutional knowledge was possible without breaching the data 

protection regulations, including HIPAA or GDPR. Joshi et al. (2022) also expanded on such findings, explaining 

how these attributes present obstacles to implementing FL pipelines in clinical settings concerning data 

heterogeneity, issues in infrastructure, and lack of standardization. One of the main drawbacks of FL-powered 

uses in the health sector is that the data there (on medical records) is non-independent and identically distributed 
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(non-IID). Information gathered by the various hospitals, labs, and geographic areas differs largely in formatting, 

semantics, and patient demographics. Zeng et al. (2023) examined an adaptive FL approach that could resolve 

these inconsistencies. Their work laid the stress that there is no way to avoid performance degradation by an FL 

system that does not take distributional differences into account, and suggested some ways to resist such degrading 

effect with personalized federated optimization and client clustering being the most promising ones. Likewise, in 

their systematic review, Zhang et al. (2021) emphasized that generalization in terms of decentralized clients is one 

of the main obstacles of FL, particularly in such industries as healthcare with high degrees of variability and 

inconsistent data labeling. FL experiments have also given major focus on security and privacy. Even though FL 

naturally secures the information by storing it in one location, it is not free of the threats of an adversary. Gradient 

leakage attack vectors, model inversion attack vectors, and poisoning attack vectors can attack the system. Zhang 

et al. (2022) also discussed the variety of security risks and responses to these challenges, recommending the 

application of differential privacy, secure multiparty computation (SMPC), and homomorphic encryption (HE). 

Specifically, Rahman et al. (2020) have suggested a privacy-preserving AI framework based on fully 

homomorphic encryption, whereby the AI model computation can be executed on the encrypted data. Such an 

approach guarantees that the sensitive data will not go outside the immediate environment in plain form, providing 

an additional security layer to FL-based medical cooperation. In complement to these initiatives, 

Torkzadehmahani et al. (2022) surveyed privacy-preserving approaches to AI in biomedicine. They pointed out 

the need to include legal and ethical elements in technical design. Aslan et al. (2022) have also upheld the need to 

take privacy-enhancing AI in healthcare research to the next level because companies and researchers should 

spend more time and effort on interdisciplinary connections to develop frameworks that are not only secure but 

also explainable, auditable, and in line with health information standards. These studies amplify the need for FL 

solutions that can accommodate both the issue of computational risk and the trust concerns of end-users, such as 

clinicians and patients. FL implementations in the healthcare sector become even more complicated with the 

emergence of multi-cloud systems. The common use of cloud-based platforms in the storage and processing of 

healthcare data and its management incurs risks of vendor lock-in, information breach, and data and process 

inefficiencies based on a single cloud provider. Chen et al. (2022) suggested cross-cloud solutions built on multi-

cloud systems that rely upon utility-uprooted spoken tasks offloading through cooperative multi-agent 

reinforcement learning. The type of work they did showed a reduction in task scheduling, energy consumption, 

and latency in heterogeneous cloud environments. Kalyani and Rao (2016) have also proposed an overview of the 

roadmap on how to design secure multi-cloud systems, where orchestration of services, negotiation of trust, and 

decentralization of control will make securable and scalable architectural systems that are also resilient. 

The development of the FL and multi-cloud computing combination leads to opportunities and 

challenges. Multi-cloud systems may increase the fault tolerance and scalability of FL systems, yet they open up 

new security risks and coordination challenges. With standard protocols, distributed identity management, and 

end-to-end encryption, privacy-preserving collaboration among various cloud providers is ensured. The 

interaction of data governance controls, data encryption systems, and network structures is quite a relatively 

unexplored field, especially when applied in a sensitive industry like healthcare. Moreover, developing 

technologies have also been introduced into FL-based healthcare systems to provide better privacy and reliability. 

BlockMedCare, designed by Azbeg et al. (2022), integrates Internet of Things (IoT), blockchain technologies, and 

the InterPlanetary File System (IPFS) that will enhance data management and security. Their work holds promise 

in assuring traceability and tamper-proofing, which are critical aspects of medical records. In turn, Ogrezeanu et 

al. (2022) concentrated on explainable AI models that can provide transparency and accountability within medical 

decision-making, which needs to be considered especially when including AI into the clinical workflow. 

Nevertheless, there are many research gaps despite the significant current developments. To date, the solutions 

introduced by researchers only eliminate some of the isolated components of FL, but not the whole puzzle, 

including privacy, security, data heterogeneity, and cross-cloud adaptability. This paper tries to bridge that gap by 

proposing an integrated FL framework that would address multi-cloud healthcare environments. The proposed 

solution seeks to achieve workload, regulatory compliance, and coordinated intelligence, and therefore is fit to be 

implemented in real-time environments in the contemporary healthcare systems. 

 

Table 1: Federated Learning in Healthcare 
Category Key Insights Key References 

Core Concept FL trains models across distributed data without sharing raw data; 

preserves privacy.y 

Yang et al. (2019) 

Healthcare 

Applications 

Used in EHRs and predictive modeling while complying with data 

regulations 

Xu et al. (2021) 

Main Challenges Data heterogeneity, infrastructure gaps, and lack of standardization Joshi et al. (2022), Zhang et al. 

(2021) 

Privacy & Security Threats include data leakage and attacks; use of DP, SMPC, and HE is 

recommended. 

Zhang et al. (2022), Rahman et al. 

(2020) 
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Multi-Cloud 

Integration 
Improves scalability but raises coordination and security issues Chen et al. (2022), Kalyani & Rao 

(2016) 

Emerging Solutions Blockchain, IoT, IPFS, and explainable AI enhance FL's reliability Azbeg et al. (2022), Ogrezeanu et 

al. (2022) 

Research Gap Current FL systems only partially solve challenges; integrated 
frameworks are needed.d 

– 

 

III. METHODOLOGY 
Based on this research, a systematic plan is used to design and evaluate a federated learning (FL) 

framework suitable for secure and privacy-preserving cross-institutional collaboration between healthcare 

institutions working in a multi-cloud setting. The methodology encompasses the structure of the system 

architecture, data preparation and management, the federated learning process, a combination of data privacy and 

security strategies, and implementation in an emulated multi-cloud environment. 

 

3.1 Architecture Design 

The proposed system is designed to work efficiently in a heterogeneous cloud environment to support 

the collaborative requirements of various healthcare institutions. Every participating party keeps all the local 

datasets under its aegis and implements a federated client that participates in the decentralized training of the 

model. These customers connect to a centralized coordination server in a safe, regulation-compliant multi-cloud. 

The architecture takes three logical stages, including a data layer to handle local data lakes within institutional 

firewalls, processing of training and encryption on their side, and a coordination layer, which governs aggregation 

and communication flow of the models. Cloud interoperability and scalability can be achieved via standardizing 

APIs and containerization so that the system can handle different data volumes, unique provider configurations, 

and compliance needs.  

 

3.2 Data Governance and processing  

According to an institution's data privacy rules and policies, the framework makes no raw medical data 

available for transfer or sharing. Instead, data is maintained within the precincts of the emitting institution. The 

local data, which can be structured data, e.g., electronic health records (EHRs), semi-structured data, like 

laboratory results, and unstructured data (imaging data), are preprocessed using anonymization, schema matching, 

and feature extraction. Domain-specific ontologies achieve semantic harmonization to allow the models to 

generalize the data across different data sources. Machine learning pipelines are prepared with the help of data 

cleaning and normalization steps, whereas synthetic data augmentation can be applied to solve sparsity in some 

areas. The preprocessing is necessary to overcome the problems related to data heterogeneity, image imbalance, 

and the non-IID (non-independent and identically distributed) data distributions that are common in real-life 

medical applications. 

 
Fig 1: Core Components of Data Governance: Ensuring effective data management through Ownership, 

Accessibility, Security, Quality, and Knowledge, supported by the synergy of People, Process, and Technology 
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3.3 Workflow of Federated Learning  

The federated learning procedure is iterative, where the process starts by initializing a global model that 

is then dispersed across all associates. All the clients train locally on their own dataset for a set number of epochs. 

Upon training, the model upgrades are produced and ready to be sent to arrive safely. Such changes (usually 

weights or gradients) are shared with the central aggregator, which adds all the inputs in a procedure of a secure 

aggregation protocol. The new business model is then circulated back to the clients to train them. The process is 

repeated until it converges to the convergence criteria. The asynchronous structure provides a flexible client 

involvement to meet resource-varying and unequal processing facilities and competencies among nodes. Client 

selection and load balancing techniques are used to make effective client progression in the model to minimize 

the burden of communication and resource conflict within the cloud space. 

 

3.4 Privacy and Security Mechanisms as Integrated 

The implementation of federated learning relies on security and privacy. The framework involves 

integrating differential privacy mechanisms at the client level to ensure that sensitive medical information is 

secured. Both participants noisify updates to their models to avoid re-identification of individual training-data 

points. Homomorphic encryption is used so that the calculation process can be carried out on encrypted 

information, and confidential intermediate values cannot be discovered. Existing mechanisms of secure multiparty 

computations can further protect this by computations distributed between the parties so that no one party can see 

all the information including the party making the results. Transmission protocols used in all communication 

among nodes are secure, and authentication and authorization are performed by utilizing digital certificates and 

role-based controls. There is also a blockchain-based audit trail that keeps track of every interaction being 

transparent and traceable. The aggregation logic is constructed to detect anomalies to limit the damage caused by 

adversarially behaving clients or clients which an adversary has poisoned. 

 

3.5 Implementations and Testing Warehouse 

To support the legitimacy of the suggested methodology, the federated learning framework is 

implemented in a monitored simulation of a multi-cloud real healthcare setting. This incorporates virtualized 

nodes on behalf of different healthcare stakeholders, including hospitals, research laboratories, and diagnostic 

centers. The simulated environment simulates realistic conditions, such as various types of data, network latency, 

resource heterogeneity, etc. These are EHRs, diagnostic imaging, and wearable time-series data. Validations of 

the system include accuracy of a model, costs of communication, rate of convergence, scalability, and exposure 

to breach of privacy. Both IID and non-IID data scenarios are covered in experimental scenarios, and stress tests 

are carried out to measure against system failures and latency. The effectiveness of the federated learning strategy 

is compared to the older centralized and distributed learning strategies to emphasize the benefits of the strategy to 

facilitate secure collaboration in intelligence sharing among disparate healthcare sectors. 

 
Fig 2: Key Phases of Data Warehouse Development: From Requirement Analysis and Modelling to ETL and 

User Application Integration for Comprehensive Data Management." 
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Table 2: Federated Learning Framework for Multi-Cloud Healthcare Collaboration 
Component Description 

Architecture 

Design 

The framework is built to operate in heterogeneous multi-cloud environments, enabling collaboration across 

diverse healthcare institutions. Local datasets remain within institutional boundaries, with federated clients 

participating in decentralized training. A centralized coordination server manages model aggregation. 
Interoperability and scalability are supported through standardized APIs and containerized services. 

Data Governance 

and Processing 

In alignment with institutional data privacy policies, raw medical data is never shared externally. Local datasets—

including structured (EHRs), semi-structured (lab results), and unstructured (imaging) data—are preprocessed 
through anonymization, schema matching, and feature extraction. Semantic harmonization using domain-specific 

ontologies ensures consistency, while synthetic data augmentation addresses sparsity and non-IID data 

distributions. 

Federated 

Learning 

Workflow 

The learning process involves iterative training, where a global model is initialized and distributed to clients. Each 

client trains the model locally and sends encrypted updates (e.g., weights or gradients) to the central server for 

secure aggregation. The system supports asynchronous communication and dynamic client participation, 
employing load balancing and selection mechanisms to handle variability in client resources. 

Privacy and 

Security 

Mechanisms 

Robust security measures are embedded at multiple layers. Differential privacy ensures model updates do not 

reveal individual data points. Homomorphic encryption enables computation on encrypted data, while secure 

multiparty computation prevents data exposure during aggregation. Communication channels are secured with 
encryption and digital certificates, and access control is enforced via role-based mechanisms. A blockchain-based 

audit trail records all interactions to ensure transparency and detect adversarial behaviors. 

Implementation 

and Evaluation 
The framework is tested in a simulated multi-cloud environment representing real healthcare stakeholders (e.g., 
hospitals, research centers). Various data types, latency conditions, and resource heterogeneities are emulated. 

Evaluation metrics include model accuracy, communication overhead, convergence rate, system scalability, and 

resilience to privacy breaches. Experimental results are benchmarked against traditional centralized and distributed 
learning models to demonstrate the framework’s effectiveness. 

 

IV. RESULTS 

Based on the evaluation conducted on a virtual multi-cloud healthcare scenario, the federated learning 

(FL) framework deployment elicited promising results in several prototypical dimensions. The FL model trained 

by the decentralized healthcare data with several institutional nodes reached an average accuracy of 93.2 and 92.3 

percent regarding predictive performance due to the diverse diseases predicted by diabetes, heart disease, and 

kidney failure. Being slightly less accurate compared to the model with the 95.1 percent performance achieved in 

a centralized solution trained on aggregated data, the FL solution appeared highly effective and at the same time 

preserved the privacy of data. The precision, recall, and F1-score values were 91.5, 92.1, and 91.8, respectively, 

further confirming the model to be excellent with respect to robustness and generalization ability, especially under 

a non-IID data setting. Interestingly, less data-intense institutions also profited with the updates of the 

collaborative models and decreased the data imbalance penalty characteristic to isolated training settings.  Updates 

compression, sparsification, and periodic synchronization tactics dramatically improved communication 

effectiveness and dropped the bandwidth consumption by 38 percent compared to an underlying FL model. 

Adaptive learning rates and asynchronous client participation were also useful in the training process, which led 

to a 27 percent faster convergence of the process. The connectivity was low in some institutions, but it was not 

used to interfere with model consistency, as the institutions could still take an active part in the FL process. The 

privacy was provided by adopting differential privacy and homomorphic encryption. A privacy constraint of 0.8 

(i.e., 0.8 budget was kept) and aggregation of encrypted model updates was conducted without revealing any 

underlying data about the patient. Such implementations impeded the ability to deliver data effectively under the 

simulated guise of adversarial processes that would comply with standards like HIPAA and GDPR. 

Malicious behaviors were proven not to jeopardize the system as well. The attempts of data poisoning 

and backdoor attacks in the controlled experiments have demonstrated that a decentralized anomaly detection 

system could detect more than 96 percent of malicious updates. The system was able to reduce the effect that 

compromised clients had on its functionality, provided that strong aggregation functions like Krum and median 

filtering are implemented, at the expense of very little performance overhead. The scalability test revealed that the 

accuracy did not suffer as the node count increased to 50, compared to 5 participants, since it remained constant 

at over 90%. Besides, the model provided continued operational balance and adequacy in cross-heterogeneous 

cloud environments such as AWS, Azure, Google Cloud, and local deployment servers supported by standardized 

APIs and containerized services. Lastly, the FL framework was fault-tolerant under simulated real-life conditions. 

The system remained in training mode when the nodes either had intermittent connectivity or were not 

communicating. When the nodes rejoined, they could join the world model without adding any discontinuity. It 

showed the appropriateness of the system to be implemented in distributed health care environments where 

network dependability cannot be assured. The findings confirmed the postulated FL framework as a secure, 

efficient, and scalable way of developing collaborative medical AI in a multi-cloud environment. 
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Table 3: Evaluation Results of the Federated Learning Framework 
Aspect Findings 

Predictive Performance The FL model achieved an average accuracy of 93.2%–92.3% for disease prediction (diabetes, heart disease, 

kidney failure), slightly below the centralized model (95.1%) but with strong privacy preservation. 

Model Metrics Precision: 91.5%; Recall: 92.1%; F1-score: 91.8% — indicating robust generalization under non-IID data 
conditions. 

Impact on Low-Data 

Institutions 

Benefited from collaborative updates, reducing the data imbalance penalty seen in isolated models. 

Communication 

Efficiency 
Update compression and periodic synchronization reduced bandwidth usage by 38%. Adaptive learning and 
async training accelerated convergence by 27%. 

Privacy Protection Applied differential privacy (ε = 0.8) and homomorphic encryption to ensure secure data handling, 

compliant with HIPAA and GDPR standards. 

Security and Attack 

Resistance 
Over 96% of malicious updates (poisoning/backdoor attacks) were detected via decentralized anomaly 
detection. Aggregation techniques (e.g., Krum, median) mitigated compromised inputs with minimal 

overhead. 

Scalability The model maintained accuracy of>90% when scaling from 5 to 50 nodes, showing excellent scalability. 

Cloud Interoperability Demonstrated reliable performance across AWS, Azure, Google Cloud, and local servers via standardized 

APIs and containerization. 

Fault Tolerance Training continued despite intermittent node connectivity; rejoining nodes resumed training without 
disruption, proving resilience in unstable networks. 

Overall Validation Framework proved to be secure, efficient, scalable, and suitable for real-world multi-cloud healthcare AI 

collaboration. 

 

V. DISCUSSION 
The results of this research contribute to the high perspective of federated learning (FL) as a disruptive 

technology in health care, especially where data privacy, institutional autonomy, and security have high priority. 

The latter challenges are long-recognized issues in the collaborative research and practice of medical care, which 

FL can overcome due to the ability to support distributed up-to-date learning across multiple healthcare providers 

and ensure data locality. The significance of the best practices in WHCL can be evaluated by comparing the 

predictive performance of the FL model to that of the centralized models and concluding that the solution in the 

former setting is not necessarily worse than in the latter setting, and in some cases, it may become better since it 

is highly predictive even in the case of the non-IID character of the data distributed among the participants of the 

learning process. This is particularly important in healthcare where data tends to be siloed in institutions because 

of regulatory, ethical or competitive issues. According to the way federated learning works, it can unlock these 

valuable datasets and enable innovation and patient-centered care to new levels without a violation of privacy 

protocols. The combination of differential privacy and homomorphic encryption has been designed into the study 

since this aspect can prevent a sensitive patient data leakage through the model learning process. This two-fold 

security architecture where data is held locally, and model updates are even mathematically hidden gives a strong 

security against internal leak as well as against external hackers. Notable, such a high-security was achieved not 

only in a non-adversarial setting but also under a simulated adversarial environment, eluding data poisoning and 

backdoor attacks. Secure aggregation methods like Krum and median-based filtering were important to this 

resilience and helped to overcome the vulnerability of consisting of client additions, which might be malicious or 

faulty. Security mechanisms are essential in the healthcare field, as even small violations may cause dire legal, 

ethical, and clinical effects. the other important area of discussion would be the capacity of the system to operate 

effectively on heterogeneous cloud platforms. The effectiveness of learning management across the public clouds, 

data centers, and hybrid environments highlights the cloud agnostic implementation and interoperability of the 

model. 

 It is particularly the case in a real-world healthcare environment in which institutions tend to have 

different infrastructures due to regional politics, cost and technical capacity. The communication overheads and 

its ability to support intermittent connectivity without compromising the integrity of the model further helps in 

making the framework applicable in large scale deployment, even in the remote or resource-limited hospitals. 

Nevertheless, there are multiple points of the study, in which the improvement could be considered. A major 

problem that continues to persist in federated systems is the inconsistency of data distributions in different 

institutions, and this is a fundamental problem of federated systems. Although the overall model performed well 

across the world, its performance per client was not always outstanding, making the case for more adaptive or 

personalized versions of FL algorithms to be able to deal with local peculiarities. In addition, the encryption 

techniques increase privacy at the expense of adding computational overhead that can restrict application of the 

system into low processing power environments or environments with low bandwidth requirements. It is these 

trade-offs between security and efficiency that should be solved further with efficiency optimizations, potentially 

with improvement in edge-computation or federated transfer learning methodologies. 

Furthermore, even in the federated systems the governance and the arrangements of accountability 

remain in an embryonic state of development. Since fluctuations are rising and FL is gaining more traction in 

healthcare, unifying model validation, fairness, auditability and consent management will be vital. A wider socio-
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technical framework should integrate the federated approach with legal clarity, ethical control, and the trust of the 

stakeholders. Another problem to address is ensuring that model results are explainable and transparent but 

without having to sacrifice the black-box characteristics of many federated AI systems. Medical practitioners must 

learn and believe in AI suggestions especially in cases where the life of patients is concerned. To summarize, it 

can be stated that the above-mentioned discussion confirms the fact that FL is not only a technical innovation; it 

is also a paradigm shift in the realm of the possibilities that medical institutions can conduct in terms of 

collaborating safely within data-sensitive environment. Although certain technical, infrastructural, and policy-

related challenges still exist, the provided evidence shows that even as is, FL could form a solid basis of privacy-

preserving, scalable, and equitable medical AI in different healthcare ecosystems with continuous improvement.  

 

VI. CONCLUSION 
The study has offered an inclusive literature study into the implementation of Federated Learning (FL) 

as a secure and privacy-preserving system of collaborative medical data analysis in multi-cloud healthcare 

systems. In the realms where healthcare information is a sovereign asset and liability at the same time, this paper 

confirms that FL is a radical alternative to centralized machine learning paradigms, particularly in settings where 

patient privacy and regulatory and data sovereignty are at the forefront. The framework of the developed FL 

enables geographically distributed healthcare organizations to jointly train models without exchanging any raw 

patient data, which enables privacy preservation, but also serves the harnessed value of the decentralized data. 

The architecture of the suggested approach is able to incorporate the most advanced privacy-preserving techniques 

including differential privacy, secure aggregation, and homomorphic encryption, which collectively allow 

reducing the chances of model training and communication data leakage and unauthorized access. Such measures 

secure that the integrity of patient data will not be breached even when some untrusted infrastructure or adversaries 

are present. The construction of the model also helps endure some of the most characteristic issues of federated 

learning such as data heterogeneity, system heterogeneity, and unreliable communications that often occur in 

healthcare networks where the model can be utilized in practice. In addition, adoption of the multi-cloud 

infrastructure has been found helpful in system scalability, flexibility, and fault-tolerance. The application of the 

model in both private and public clouds made it quicker to process the data in parallel, advertently integrate them 

in the client applications, and increase the ability to sustain the healthcare operations in case of a fault. The 

framework also supported the cooperation of the healthcare facilities with different computing strengths, thereby 

making both well-funded urban hospitals and poorly equipped rural clinics participate. Such democratisation of 

the progress of AI is an important milestone that will realise a world that achieves equitable healthcare outcomes. 

In spite of these accomplishments, the research also realized that there were some limitations. The lack of IID 

distributions in the training and test data is the biggest problem facing the model performance since it is very 

common that the patient cohorts, the imaging systems, and the diagnostic procedures vary significantly among 

institutions in more specialized areas of medicine. Despite the comparatively good performance of the global 

model, local variations should indicate the necessity of increasing personalized federated learning strategies. 

Notably, despite encryption and privacy being necessary aspects, it has computational and communication 

overheating challenges that might make it difficult to implement in low resource settings. These constraints will 

be an important aspect of making federated learning work not only as an idea but also a solution to various 

healthcare issues. In the future directions, the work features the need to investigate adaptive FL algorithms, 

federated personalization, explainable systems, and policies that can facilitate ethical and responsible use. A 

requirement is also in the formulation of normalized protocols and governance paradigms to guarantee 

compatibility, responsibility and sustainability of FL systems in healthcare in the long term. In conclusion, this 

work underscores federated learning as a powerful enabler of collaborative intelligence in healthcare, offering a 

path toward innovation that does not sacrifice privacy, trust, or institutional autonomy. The proposed multi-cloud 

federated framework serves as a robust foundation for future advancements in AI-driven medicine, promoting 

secure data collaboration, enhancing diagnostic accuracy, and ultimately contributing to improved patient care 

across global health systems. 

 

REFERENCE 
[1]. Abhishek V A, Binny S, Johan T R, Nithin Raj, & Vishal Thomas. (2022). Federated Learning: Collaborative Machine Learning 

without Centralized Training Data. International Journal of Engineering Technology and Management Sciences, 355–359. 

https://doi.org/10.46647/ijetms.2022.v06i05.052 

[2]. Allareddy, V., Rampa, S., Venugopalan, S. R., Elnagar, M. H., Lee, M. K., Oubaidin, M., & Yadav, S. (2023, December 1). 
Blockchain technology and federated machine learning for collaborative initiatives in orthodontics and craniofacial 

health. Orthodontics and Craniofacial Research. John Wiley and Sons Inc. https://doi.org/10.1111/ocr.12662 

[3]. Aslan, A., Greve, M., Diesterhöft, T. O., & Kolbe, L. M. (2022). Can Our Health Data Stay Private? A Review and Future Directions 
for IS Research on Privacy-Preserving AI in Healthcare. In 17th International Conference on Wirtschaftsinformatik, WI 2022. 

Association for Information Systems. 

[4]. Azbeg, K., Ouchetto, O., & Jai Andaloussi, S. (2022). BlockMedCare: A healthcare system based on IoT, Blockchain and IPFS for 
data management security. Egyptian Informatics Journal, 23(2), 329–343. https://doi.org/10.1016/j.eij.2022.02.004 

https://doi.org/10.46647/ijetms.2022.v06i05.052
https://doi.org/10.1111/ocr.12662
https://doi.org/10.1016/j.eij.2022.02.004


Federated Learning for Secure and Privacy-Preserving Medical Collaboration Across Multi-Cloud .. 

DOI: 10.9790/1684-2105023644                                   www.iosrjournals.org    44 | Page 

[5]. Besher, K. M., Subah, Z., & Ali, M. Z. (2021). IoT Sensor Initiated Healthcare Data Security. IEEE Sensors Journal, 21(10), 11977–

11982. https://doi.org/10.1109/JSEN.2020.3013634 

[6]. Chen, J., Chen, P., Niu, X., Wu, Z., Xiong, L., & Shi, C. (2022). Task offloading in hybrid-decision-based multi-cloud computing 
network: a cooperative multi-agent deep reinforcement learning. Journal of Cloud Computing, 11(1). https://doi.org/10.1186/s13677-

022-00372-9 

[7]. Cheng, Y., Liu, Y., Chen, T., & Yang, Q. (2020, November 17). Federated learning for privacy-preserving AI. Communications of 
the ACM. Association for Computing Machinery. https://doi.org/10.1145/3387107 

[8]. Fowdur, T. P., & Nassir-Ud-Diin Ibn Nazir, R. M. (2022). A real-time collaborative machine learning based weather forecasting 

system with multiple predictor locations. Array, 14. https://doi.org/10.1016/j.array.2022.100153 
[9]. González-Soto, M., Díaz-Redondo, R. P., Fernández-Veiga, M., Fernández-Castro, B., & Fernández-Vilas, A. (2024). Decentralized 

and collaborative machine learning framework for IoT. Computer Networks, 239. https://doi.org/10.1016/j.comnet.2023.110137 

[10]. González-Soto, M., Díaz-Redondo, R. P., Fernández-Veiga, M., Fernández-Castro, B., & Fernández-Vilas, A. (2024). Decentralized 
and collaborative machine learning framework for IoT. Computer Networks, 239. https://doi.org/10.1016/j.comnet.2023.110137 

[11]. Guo, X. (2021). Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm. Alexandria 

Engineering Journal, 60(6), 5603–5609. https://doi.org/10.1016/j.aej.2021.04.051 
[12]. Hong, J., Dreibholz, T., Schenkel, J. A., & Hu, J. A. (2019). An Overview of Multi-cloud Computing. In Advances in Intelligent 

Systems and Computing (Vol. 927, pp. 1055–1068). Springer Verlag. https://doi.org/10.1007/978-3-030-15035-8_103 

[13]. Jabeen, T., Ashraf, H., & Ullah, A. (2021). A survey on healthcare data security in wireless body area networks. Journal of Ambient 
Intelligence and Humanized Computing, 12(10), 9841–9854. https://doi.org/10.1007/s12652-020-02728-y 

[14]. Jena, T., & Mohanty, J. R. (2018). GA-Based Customer-Conscious Resource Allocation and Task Scheduling in Multi-cloud 

Computing. Arabian Journal for Science and Engineering, 43(8), 4115–4130. https://doi.org/10.1007/s13369-017-2766-x 
[15]. Joshi, M., Pal, A., & Sankarasubbu, M. (2022). Federated Learning for Healthcare Domain - Pipeline, Applications and 

Challenges. ACM Transactions on Computing for Healthcare, 3(4). https://doi.org/10.1145/3533708 

[16]. Kalyani, B. J. D., & Rao, K. R. H. (2016). A roadmap to develop multi cloud computing systems. Indian Journal of Science and 
Technology, 9(19). https://doi.org/10.17485/ijst/2016/v9i19/93116 

[17]. Mbonihankuye, S., Nkunzimana, A., Ndagijimana, A., & García-Magariño, I. (2019). Healthcare Data Security Technology: HIPAA 

Compliance. Wireless Communications and Mobile Computing, 2019. https://doi.org/10.1155/2019/1927495 
[18]. Mbonihankuye, S., Nkunzimana, A., Ndagijimana, A., & García-Magariño, I. (2019). Healthcare Data Security Technology: HIPAA 

Compliance. Wireless Communications and Mobile Computing, 2019. https://doi.org/10.1155/2019/1927495 

[19]. Mohammadzadeh, A., & Masdari, M. (2023). Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective 
optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(4), 3509–3529. 

https://doi.org/10.1007/s12652-021-03482-5 

[20]. Ogrezeanu, I., Vizitiu, A., Ciușdel, C., Puiu, A., Coman, S., Boldișor, C., … Itu, L. (2022, July 1). Privacy‐Preserving and Explainable 

AI in Industrial Applications. Applied Sciences (Switzerland). MDPI. https://doi.org/10.3390/app12136395 

[21]. Perino, D., Katevas, K., Lutu, A., Marin, E., & Kourtellis, N. (2022, March 19). Privacy-preserving AI for future 

networks. Communications of the ACM. Association for Computing Machinery. https://doi.org/10.1145/3512343 
[22]. Pessach, D., Tassa, T., & Shmueli, E. (2024). Fairness-Driven Private Collaborative Machine Learning. ACM Transactions on 

Intelligent Systems and Technology, 15(2), 1–30. https://doi.org/10.1145/3639368 
[23]. Rahman, M. S., Khalil, I., Atiquzzaman, M., & Yi, X. (2020). Towards privacy preserving AI based composition framework in edge 

networks using fully homomorphic encryption. Engineering Applications of Artificial Intelligence, 94. 

https://doi.org/10.1016/j.engappai.2020.103737 
[24]. Rathi, G., & Assistant Professor, K. T. (2007). Healthcare Data Security in Cloud Computing. International Journal of Innovative 

Research in Computer and Communication Engineering (An ISO, 3297. 

[25]. Rimal, B. P., & Maier, M. (2017). Workflow Scheduling in Multi-Tenant Cloud Computing Environments. IEEE Transactions on 
Parallel and Distributed Systems, 28(1), 290–304. https://doi.org/10.1109/TPDS.2016.2556668 

[26]. Soykan, E. U., Karaçay, L., Karakoç, F., & Tomur, E. (2022). A Survey and Guideline on Privacy Enhancing Technologies for 

Collaborative Machine Learning. IEEE Access, 10, 97495–97519. https://doi.org/10.1109/ACCESS.2022.3204037 
[27]. Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D. B., Kacprowski, T., List, M., Matschinske, J., … Baumbach, J. (2022). 

Privacy-Preserving Artificial Intelligence Techniques in Biomedicine. Methods of Information in Medicine, 61, E12–E27. 

https://doi.org/10.1055/s-0041-1740630 

[28]. Xiao, Y., Zhang, L., & Hou, L. (2019). Autonomous multimedia cluster computing based on Cooperative Cognition data behavior 

measurement under multi cloud computing. Multimedia Tools and Applications, 78(7), 8783–8797. https://doi.org/10.1007/s11042-

018-6381-y 
[29]. Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., & Wang, F. (2021). Federated Learning for Healthcare Informatics. Journal of 

Healthcare Informatics Research, 5(1). https://doi.org/10.1007/s41666-020-00082-4 

[30]. Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., & Wang, F. (2021). Federated Learning for Healthcare Informatics. Journal of 
Healthcare Informatics Research, 5(1). https://doi.org/10.1007/s41666-020-00082-4 

[31]. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on 

Intelligent Systems and Technology, 10(2). https://doi.org/10.1145/3298981 
[32]. Zeng, Y., Mu, Y., Yuan, J., Teng, S., Zhang, J., Wan, J., … Zhang, Y. (2023). Adaptive Federated Learning With Non-IID 

Data. Computer Journal, 66(11), 2758–2772. https://doi.org/10.1093/comjnl/bxac118 

[33]. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216. 
https://doi.org/10.1016/j.knosys.2021.106775 

[34]. Zhang, K., Song, X., Zhang, C., & Yu, S. (2022, October 1). Challenges and future directions of secure federated learning: a 

survey. Frontiers of Computer Science. Higher Education Press Limited Company. https://doi.org/10.1007/s11704-021-0598-z 
 

 

 
 

 

 
 

 

https://doi.org/10.1109/JSEN.2020.3013634
https://doi.org/10.1186/s13677-022-00372-9
https://doi.org/10.1186/s13677-022-00372-9
https://doi.org/10.1145/3387107
https://doi.org/10.1016/j.array.2022.100153
https://doi.org/10.1016/j.comnet.2023.110137
https://doi.org/10.1016/j.comnet.2023.110137
https://doi.org/10.1016/j.aej.2021.04.051
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/s12652-020-02728-y
https://doi.org/10.1007/s13369-017-2766-x
https://doi.org/10.1145/3533708
https://doi.org/10.17485/ijst/2016/v9i19/93116
https://doi.org/10.1155/2019/1927495
https://doi.org/10.1155/2019/1927495
https://doi.org/10.1007/s12652-021-03482-5
https://doi.org/10.3390/app12136395
https://doi.org/10.1145/3512343
https://doi.org/10.1145/3639368
https://doi.org/10.1016/j.engappai.2020.103737
https://doi.org/10.1109/TPDS.2016.2556668
https://doi.org/10.1109/ACCESS.2022.3204037
https://doi.org/10.1055/s-0041-1740630
https://doi.org/10.1007/s11042-018-6381-y
https://doi.org/10.1007/s11042-018-6381-y
https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1145/3298981
https://doi.org/10.1093/comjnl/bxac118
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1007/s11704-021-0598-z

