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Abstract: In this work, fault detection in a single cracked beam has been worked out. The identification of
location and the depth of crack in a beam containing single transverse crack is done through theoretical and
experimental analysis respectively. It has come to noticed that a crack in a beam has great effect on dynamic
behavior of beam. The strain energy density function also applied to examine the few more flexibility produced
to because of the presence of crack. Considering the flexibility an additional stiffness matrix is taken away and
consequently, it is used to find the natural frequency and mode shape of the cracked beam of different end
conditions of beam. The difference of mode shapes of cantilever beam, simply supported beam and Clamped —
Clamped beam in between the first three modes of cracked and un-cracked respectively beam with its amplified
view at the zone of the crack locale are studied. The theoretical analyses are carried out of the crack structure.
Finally for the validation result are compared with the results of both theoretical and experimental analysis. It
is found that the contract agreed between their results is excellent.

Keywords: beam, crack, fault, frequency, locale, mode shape, stiffness matrix, vibration.

I Introduction

Location of crack through the method of vibration signature is great advantages over traditional
methods. Present approach can make it easier to find out the position and crack size of cracked beam structure
by the putting of data accumulated from the vibration signature. The crack grew in the structure produces
flexibility at the locale of crack which results a contraction of natural frequency and the modification in the
mode of shape. From this, it may clear that by measuring and putting the vibration parameters can be calculate
the position and depth of the crack of cracked beam. Paris et al. [15] have written the principle for find out of
compliance matrix for different types of beams. Sekhar et al. [17] have given a method to calculate the vibration
characteristics by applying model based finite element analysis (FEA). Zhu et al. [22] have presented wavelet
analysis for crack identification of bridge beam structure under a moving load. Al-Said et al. [1] have developed
a mathematical model in which they proposed to identify crack location and depth in a stepped cantilever Euler-
Bernoulli beam carrying a rigid disk at its tip. They have concluded that error in concurrent prediction of crack
depth and its location using the proposed algorithm is about 10%. Xiang et al. [19] have taken a section on beam
like structure and developed a model of Rayleigh beam elements model to identify crack location. Chondros et
al. [5] have studied the torsion vibration of a circumferentially cracked cylindrical shaft through an exact
analytical solution and a numerical finite element analysis. Darpe [7] has projected detection tactic exploits
mutually the typical non linear breathing phenomenon of the fault and the coupling of bending torsion vibrations
due to the presence of fault for its analysis. He has worked out a transient torsion excitation which is useful for a
very small duration at exact angular direction of the rotor and its result in the lateral vibration is investigated. He
used wave let transform (WTs) in enlightening the short-lived features of the deep twisting vibrations, which are
put conscious for a little duration of time upon transitory torsion excitation. Bachschmid et al. [3] have studied
develop of fatigue cracks in rotating shaft and explained their propagation was mainly in planes perpendicular to
the axis of rotation. Qiao et al. [16] have presented sign form fractal dimension for mode shape-based break
identification of beam —type structures. In their work they used to differentiate in between the popular Katz’s
wave form fractal dimension (KWD) and an approximate wave form capacity dimension (AWCD). Arsit [4] has
studied and developed a model based technique for cracked rotor vibration system and implemented and
concluded with identification of crack, location and depth of crack in rotating machinery. Faverjon et al. [10]
have applied constitutive error updating method to identification of cracks location and size in a simply
supported beam. Chandan et al. [13] have explained rotor fault through various methods and explained using
Lagragian formulation to examine cracked rotor through nonlinear dynamics. Lu et al. [14] have applied a
response sensitivity-based approach of damage identification. El- Ouafi et al. [9] have proposed damage
identification method. They have worked out to defect and locate damage, which is validated experimentally
through ambient vibration tests conducted on full scale reinforced concrete beams and slabs with having various
simple and multiple damage configurations. Das et al. [8] have used a soft computing fuzzy-logic approach for
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crack identification in a cantilever beam. They have used Gaussian membership functions in strain energy
release rate and fuzzy controller to find out the local stiff nesses at crack location of the beam. Gardoni [11] has
developed an additive reliability analysis of reinforced concrete bridges incorporating the damage detection
information obtained from non destructive testing (NDT). He used Seismic fragility to describe the reliability of
a structure with standing future seismic demand. Chondros [6] has calculated the fatigue crack propagation of
repeated loading of the outer strut leg of the Bjork - shiley 60 °convexo-concave (BSCC) valve with a range of
time from a few months to few years. He concluded that sound emitted from the strut of the valve due to impact
may be used to monitor the propagation of the fatigue crack before it would lead to failure of the one or both
legs of the outlet strut. Kim et al. [12] have worked to identify structural damage of a cantilever beam using
excitation force level control. Singh et al. [18] have used transverse frequency response functions by genetic
algorithm method to identification of a multi crack in a shaft system. In his work, he has reduced the effect of
noise of shaft by utilizing force responses in GA method. Zhong et al. [21] have proposed a new approach for
damage detection in beam like structures with small cracks whose crack ratio = (H/H ) < 5% without baseline
modal parameters. Andreaus et al. [2] have used numerical analysis the nonlinear behavior of the harmonically
forced response to identification of cracked beam. They have applied phase portrait distortions and Fourier
spectrum to sub and super harmonic components. Yan et al. [20] have worked on Statistic structural damage
recognition based on the closed-form of element modal strain energy sensitivity.

The aim of this paper is especially on the problem of crack detection for a cracked beam using
theoretical analysis and experimental analysis. The approach evolved in this paper intimates location, size and
depth of the open crack in beam of different end conditions with rectangular cross secr:("a“)“. The comparison
results in both methodologies are written above are performed. The results of thel.l.ical analysis and
experimental analysis are compared

Il. 2. Theoretical Analysis
2.1 Local flexibility of a cracked beam under bending and axial loading:

A cantilever beam of length ‘L’, width ‘B’ and thickness ‘W’ is bearing a transverse surface crack of
depth ‘a;” with distance ‘L;’ from its fixed support and leads into a local flexibility, which can be expressed in
matrix form by using all dimensions of which depends on the degrees of freedom. At present a 2x2 matrix is
carried out. Cantilever beam is subjected to axial force ‘P;” and bending moment ‘P,’, shown in figure 1(a),
which gives coupling with the longitudinal and transverse motion. The cross sectional view of beam is in figure
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Figure: 1 Geometry of beam (a) cantilever beam (b) cross-sectional view of the beam (c) crack depth and
position.

The strain energy release rate at the fractured section can be written as [15]
1
J= E_ (Kll + K12)2 (1)
The stress intensity factors are K3, Kj,of mode I (opening of the crack) under load P; and P, respectively. The
ideals of stress concentration factors from earlier studies are (Paris et al. [15]);

P, a _ P a
Ky :mM(Fl(W))’ Kiz= BW?2 \/E(FZ(W)) @)
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Let U, be the strain energy caused by crack. Since Castiglione’s theorem, the further displacement all along the

t

force Py is: U; = ®)
oP,
_ _ ay aUt ay
The strain energy will have the shape of, U, =I da= J.J da (4)
, 0a
ou,
Where J=
oa
. o |t
From equations (3) and (4), U; =—— IJ(a) da (5)
oP; | %
ou; ©)
i aP aP P; 3
To set the concludlng erX|b|I|ty matrix integrate over the breadth ‘B’
au . 62 +B/2a;
=== j jJ(a)dadz (7)
oP;  OPOP; g,,%
B o2
Using strain energy release rate from above C;; = E E PP, j( L +K,) da 8

da
Put £ = (a/w), dE= W We get da = WdE and when a=0, £ =0; a=a;, &= a;/W = & From the above

2 &
condition,Cij:E;E—V,Vaj?j(Ku+K|2)2 dé ©)
ivjo

The local stiffness matrix can be obtained by taking the inversion of observance matrix.

-1
K:|:Kll K12j|:|:cll c:12:|

K21 K22 C21 C22 (10)
Figure 2 is the variation of dimensionless compliances to that of relative crack depth.
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Figure: 2 Relative crack depth (auwfw) vs. dimensionless compliance (In (C = 1}
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2.2.  Analysis of Free Vibration Characteristics of the Cracked Beam:

A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a crack of depth ‘a,’ at a distance ‘L;’
from the fixed end is considered. Taking u,(x, t) and u,(x, t) are amplitudes of longitudinal vibration for the
sections before and after the crack and yi(x, t), y»(x, t) are the amplitudes of bending vibration for the same
sections as shown in figure 1.The standard function for the arrangement can be described as

U,(X)=A, cos (K, X)+A, sin(K,X) (11)
U,(X)=A, cos (K X)+A, sin(K,X) (12)
¥, (X)=A, cosh (K, X)+A sinh(K, X) +A, cos (K, X)+A, sin(K, X) (13)
¥, (X)=A, cosh (K, X)+A,,sinh(K,X) + A, cos (K X)+A,, sin(K X) (14)

U _ X _ Yy L,
Where,Ui=—, X=—, y=2, B=—2

ore L L y L P L
2 2 1/2 12

Ru=m—L,Ry: oL ,CU=E ,Cy=E , W=Ap

C, C, p u

A, (i=1, 2) Constants are to be estimate, from particular limit conditions. The limit conditions of the cantilever
beam in consideration are:

0,(0)=0; y,(0)=0; ¥:(0)=0; u;()=0; y,0=0; y;@=0
At the cracked section:

U (B)=1,(B): Y:(B)=Y.(B): Yi(B)=Y2(B): ¥i(B)=Y2(B)

Also at the cracked section at distance L, from fixed end of cantilever bar we obtain,

du, (L,) dy,(L,) dy,(L,)
AE#:Kn(uz(lﬂ)_u1(|—1))+K12[ iiX 2 ax : (15)
N . . AE .
Multiplying each side of the equation (15) by —————— we obtain
117 12
M;M,U’(B)=M, (U, (B) U, (B)) + M, (V> (B) - ¥1(B)) (16)
2
Similarly, EI dyl—(zl‘l): Ko, (U, (L) = u (L)) + K, (dY2 (L) dY1(|—1)j
dx dx dx a7
Multiplying each side of the equation (17) by ziwe obtain,
227 M21
M;M, Vi (B)=M; (U, (B) -0, (B))+M, (Y2 (B) -1 (B))
Where, My== M, =2E M= EL m,= EL
LKll K12 LK22 L K21
The normal functions, equation (11) along with the boundary conditions as mentioned above, yield the
characteristic equation of the system as: |Q| =0 (18) This determinant is a function of

natural circular frequency (), the relative location of the crack (B) and the local stiffness matrix (K) which in
turn is a function of the relative crack depth (a;/W).

2.3. Analysis for Beams

To determine the differential equation for lateral vibration of beam, consider the forces and moments acting on
an element of the beam shown in figure 4.
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Ya
p(x) dx
/%\ M+ dM
M %
V+dv
|4
dx
> X

(Figure: 3 the shear forces and moments stand-on an element of the beam.)

Let, V and M are shear and bending moments, and P(x)represents the loading per unit length of the

beam.
in Y- direction, dV -P(x)dx =0 (19)
Sum of moments about any point on the right face of the element,
dM -V dx —P (x)dx(dx/2)=0 (20)
Hence, dM —Vdx — %[ P(x)(dx) ] (20a)
Here limiting procedure gives following important relationships,
L =pP@), ==V (21)
2

From equation (21), we obtain ‘ZTIZ = Z—Z =P(x) (22)
The bending moment M = ElzzTZ ,

. . d? d%y
So, the equation (22) will be oz (El ﬁ) = P(x) (23)

For a beam vibrating about its static equilibrium position under its weight, the weight per element span is equal
to the inertia load due to its mass and acceleration. Since the inertia force is the same direction as P(x), by
harmonic motion,

P(x) = pw?y (24)
Using this relation, the equation for the lateral vibration of the beam reduces to
d? d?y
= (Elﬁ) — pw?y =0 (25) 4
In the special case where the flexural rigidity EI is constant, the above equation may be written as, (EI ZTZ) -
pw’y =0 (26)
4
We obtain the fourth- order differential equation, % —a'y =0 27)
For the vibration of a uniform beam, the general solution of equation (27) can be shown Y = Acosh ax +
Bsinh ax + Ccos ax + Dsin ax (28)
Case 1: Natural frequencies of vibration of a uniform cantilever beam
2

y=0 M=0 or, Z—}ZJ =0
The boundary conditions: atx = 0, {dy , x=1, 5

—_—= 0 d y

dx V=0 or, ﬁ =0
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1. Result And Discussions

The results established from theoretical analysis, and experimental analysis are correlated and
discussed. Figure 1 presents the geometrical shape, cracked depth and cross-sectional view of the cracked
cantilever beam. The theoretical study and analysis of cracked depth with the dimensional measurements are
given in figure 2. Analyses of a single cracked cantilever beam subjected to both combine loads (axial forces
and bending forces) are given in figure 1 and 3. The results from theoretical analysis for mode shapes of beam
with its amplified view at the zone of the crack locale are shown in figures 4- 7. The block diagram of
experimental setup is drawn in figure 8. The correlation among theoretical analysis results and experimental
analysis results of the cracked beam of cantilever beam, simply supported beam and clamped — clamped beam
are displayed in figures 9-11. Experiment have been carried out on aluminum beam specimen of dimensions
800mmx38mmx6mm to find out the mode shapes of uncracked and cracked beam. The results from theoretical
analysis and experimental analysis for both cracked and un-cracked beam are correlated and shown in figures 9 -
11.

V. Conclusions

This work addresses the problem of crack detection for a cracked beam using theoretical analysis and
experimental analysis. The approach evolved in this paper intimates location, size and depth of the open crack in
beam of different end conditions i.e. cantilever beam, clamped-clamped beam and simply supported beam with
rectangular cross section. The comparisons of result in both methodologies written above are performed. The
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results of theoretical analysis and experimental analysis are compared and are found to be good correlation in
between them. It is concluded that the future work on the problem of fault recognition of a cracked beam can be
carried by using more advanced hybrid techniques with the help of finite element method and artificial
intelligence technique.
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