Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for the Determination of 17 Trace Metals in Ingenol Mebutate (API)

Sanjeeva Reddy Kallam¹, Dr. J.Srikanth², Dr.K.Vanitha Prakash³

¹Dr. Reddy's Laboratories Ltd., IDA, Bollaram, Hyderabad, Telangana, India. ²MSN Labs Pvt. Ltd., Hyderabad, Telangana, India. ³S. S. J. College of Pharmacy, Hyderabad, Telangana, India

Abstract: In this study elemental impurities method of quantitative analysis for the determination of trace metals in Ingenol mebutate (API) by ICP-MS was validated and applied. ICP-MS is a multi-element technique characterized by high selectivity, sensitivity and detection limits much lower than other multi-element techniques. Inductively coupled plasma mass spectrometry (ICP-MS) equipped with microwave digestion is considered an excellent tool for detailed characterization of the elementary composition of many samples. In this study elemental impurities method of quantitative analysis for the determination of toxic metals (As, Cd, Ni, Hg, Pb) and other trace metals Ir, Pd, Pt, Rh, Ru, Os, Mo, V, Cu, Sn, Sb, Bi in Ingenol mebutate (API) using Indium as an internal standard by ICP-MS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, the minimum detection limit, the limit of quantification, accuracy and uncertainty. The results obtained for the recovery rates of all (17) metals between 75% and 124 % were found. The detection limits of all elements studied showed the suitability of the procedure for routine analyses. Summarizing it can be concluded that the described analytical procedures to measure the mass fractions of 17 elements in Ingenol mebutate (API) samples with established traceability and evaluated uncertainty allow to obtain reliable and internationally comparable results

Keywords: ICP-MS, Microwave digestion, Multi element analysis, method validation.

I. Introduction

Ingenol mebutate is an API and actinic keratoses are premalignant lesions commonly encountered in dermatology, with risk factors that include fair skin types, age, and a history of chronic sun exposure. Cryotherapy is the most widely utilized treatment, but it is associated with the risk of scarring. Topical therapies, such as 5-fluorouracil or imiquimod, are disadvantageous for other reasons, including the longer duration of treatment and the risk of localized skin reactions with prolonged application, both of which may negatively impact patient adherence to treatment. Recently, the medical community has focused its attention on a new treatment for actinic keratoses called Ingenol mebutate. This medication is derived from the sap of the Euphorbia peplus plant, also known as petty spurge, radium weed, or milkweed. The sap is a white, sticky irritant that has long been used in traditional medicine for treatment of warts, corns, and nonmelanoma skin cancers. An Australian survey from 1986 regarding the use of home remedies for skin cancers and actinic keratoses described support among respondents regarding the effectiveness of the sap of Euphorbia peplus. In January 2012, Ingenol mebutate gel attained FDA approval for the treatment of actinic keratoses.

The purpose of this research article is validation of elemental method for determination of trace metals in Ingenol mebutate (represent the availability of seventeen elements in the API) by inductively coupled plasma mass spectroscopy (ICP-MS) method. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, the minimum detection limit, the limit of quantification, accuracy and uncertainty.The content of these elements can provide essential information for consumers, which is why the estimation of quality parameters is so important. In recent years, concentration patterns of trace elements were widely used in food authenticity studies.

Quality of measurements plays a very important role in many fields of our life, for instance in medicine, food Analysis, environmental studies or in the exchange of goods and services. Analytical chemistry aspires to obtain the most reliable analytical results, which must reflect unambiguous, true and clear values of the sample composition and to this end applies sophisticated instrumental techniques. We developed and applied analytical methods to measure the content of 17 major and trace elements in API (Ingenol mebutate)

II. Experimental

2.1 Materials and reagents

The reference samples of Ingenol mebutate, provided as gift samples from Dr.Reddys laboratories Ltd. All chemicals were of analytical grade (Fisher grade) Nitric acid, Hydrochloric acid and all other reagents (Cd, Pb, As ,Hg ,Ir, Pd, Pt, Rh, Ru ,Os, Mo, Ni, V, Cu, Sn, Sb, Bi ,In were obtained from Merck chemical division, Mumbai. All solutions were prepared with double deionized water obtained by passing distilled water through a Millipore Milli-Q water purification system (Waters Corporation, Milford, MA, USA).

2.2 Instrument and Operating Conditions

The Inductively coupled plasma mass spectrometry (ICP-MS) model: Nexion 300x system was equipped with data acquision and processing software "Nexion used for the method development and validation from Perkin Elmer, USA. Microwave digester from PerkinElmer, USA.

I UDIC I I	of this operating conditions.
Equipment	: Inductively coupled plasma-Mass spectrometer
ICP RF Power	: 1600 Watts
Plasma gas flow	: 18 Lt /min
Scan mode	: Peak hopping
Mode	: KED
Cell gas A	: 3.5 ml/min
Cell gas B	:0
RPa	:0
RPq	: 0.25
KED Mode Axial Field Voltage	: 350
No. of sweeps	: 20
No. of replicates	: 3
No. of readings	:1

Table 1-	ICP-MS	operating	conditions.
Table 1	ICI MID	operating	contantions.

2.3 Standard and Sample preparations:

Diluent: Transfer 31 mL of Conc HNO3 and 17 mL of Conc HCl into 1000 mL beaker containing 500 mL of Milli Q water and dilute to 1000 mL with Milli Q water.

2.3.1 Preparation of Standard stock solutions:

2.3.2 Preparation of 100 ppm Standard of Ir,Os,Mo,Pt,Pd,Rh,Ru,V,Ni,Sn,Sb,Bi and Cu:

Transfer 1 ml of 1000 ppm Standard of each element in to 10 ml volumetric flask individually and make up to the volume with diluent.

2.3.3 Preparation of 10 ppm Cd & Hg Standard:

Transfer 100 μ l of 1000 ppm Standard of Cd and Hg element in to 10 ml volumetric flask individually and make up to the volume with diluent.

2.3.4 Preparation of 1 ppm Pb & as Standard:

Transfer 1 ml of 1000 ppm Standard of Pb and As element in to 10 ml volumetric flask individually and make up to the volume with diluent. This is 100ppm standard solution, from this 1 ml solution transfer to 10 ml volumetric flask individually and make up to the volume with diluent. This is 10ppm standard solution, from this 1 ml solution transfer to 10 ml volumetric flask individually and make up to the volume with diluent.

2.3.5 Preparation of 100 ppb Indium Standard (Used as Internal Standard):

Transfer 1 ml of 1000 ppm Indium Standard in to 10 ml volumetric flask and make up with diluent (100ppm), from this solution transfer 100 μ l to 10 ml volumetric flask and make up with diluent (1ppm), from this solution transfer 5 ml to 50 ml volumetric flask and make up with diluent.

2.3.6 Preparation of 10J Mixed Standard:

Transfer 500 μ l of 100ppm standard of Ir, Os, Mo, Pt, Pd, Rh, Ru, V, Sn, Sb, Bi, 2.5 ml of 100ppm Ni, 5 ml of 100ppm Cu, 1.25 ml of 10ppm Cd, 750 μ l of 10ppm Hg, 2.5ml of 1ppm Pb, 750 μ l of 1ppm As in to a 50 ml volumetric flask and make up to volume with diluent.

2.3.7 Preparation of Calibration Blank and Calibration Standards:

Preparation of Calibration Blank:

Transfer 0.5 ml of n-butanol and 2 ml of 100 ppb Indium Standard in to 10 mL volumetric flask and dilute up to the mark with diluent.

2.3.8 Preparation of 0.5 J Calibration Standard:

Transfer 0.5ml of 10J Standard in to 10 ml volumetric flask and add 2 mL of 10 ppm Indium Standard, 0.5 ml nbutanol and make up with diluent.

2.3.9 Preparation of 1.0 J Calibration Standard:

Transfer I.0ml of 10J Standard in to 10 ml volumetric flask and add 2 mL of 10 ppm Indium Standard, 0.5 ml nbutanol and made up with diluent.

2.3.10 Preparation of 2.0 J Calibration Standard:

Transfer 2.0 ml of 10J Standard in to 10 ml volumetric flask and add 2 mL of 10 ppm Indium Standard, 0.5 ml n-butanol and make up with diluent.

2.3.11 Preparation of Test sample:

Transfer 100 mg of sample for each preparation in to Teflon vessel (digestion tube) Add 3 mL of Conc HNO3, Load the vessels in microwave sample digester and start the digestion program as below

Table 2- Optimized Collations										
Temperature[°C]	Pressure	Ramp	Hold	P[%]						
• • •	[bar]	(minutes)	(minutes)							
160	50	10	25	60						
50	50	0	25	0						
50	50	0	0	0						
50	50	0	0	0						
50	50	0	0	0						

Table 2- Optimized Conditions

After completion of digestion carefully transfer the solution to 10 mL volumetric flask, rinse the teflon vessels with diluent and transfer the solution to the same volumetric flask. Add 2 mL of 100 ppb Indium Standard as internal standard, 0.5 ml n-butanol to each and make up to the mark with diluent.

Preparation and Reagent Blank:

Prepare as test sample procedure without addition of sample.

Table 3- Calculation of J value:

J value is calculated by the using the formula

J (ppb) =	PDE	X 1000 (Dilution Factor=Dilution in ml/sample	e weight in gms)
	Dilution footon		

Element	PDE	Dilution	1J value	1J value	0.5J value	0.5J value	2J value	2J value		
	Value	factor	(wrt std	(wrt sample	(wrt std in	(wrt sample	(wrt std	(wrt sample		
			in ppb)	in ppm)	ppb)	in ppm)	in ppb)	in ppm)		
Cadmium (Cd)	2.5	100	25	2.5	12.5	1.25	50	5		
Molybdenum (Mo)	10	100	100	10	50	5	200	20		
Rhodium (Rh)	10	100	100	10	50	5	200	20		
Palladium (Pd)	10	100	100	10	50	5	200	20		
Osmium (Os)	10	100	100	10	50	5	200	20		
Platinum (Pt)	10	100	100	10	50	5	200	20		
Iridium (Ir)	10	100	100	10	50	5	200	20		
Ruthenium (Ru)	10	100	100	10	50	5	200	20		
Copper (Cu)	100	100	1000	100	500	50	2000	200		
Vanadium (V)	10	100	100	10	50	5	200	20		
Lead (Pb)	0.5	100	5	0.5	2.5	0.25	10	1		
Arsenic (As)	0.15	100	1.5	0.15	0.75	0.075	3	0.3		
Mercury (Hg)	1.5	100	15	1.5	7.5	0.75	30	3		
Tin(Sn)	10	100	100	10	50	5	200	20		
Bismuth(Bi)	10	100	100	10	50	5	200	20		
Antimony(Sb)	10	100	100	10	50	5	200	20		
Nickel (Ni)	50	100	500	50	250	25	1000	100		

Note: Working solution 10 ppb is equivalent to 1 ppm with respect to sample.

2.7 METHOD VALIDATION

The validation of the elemental analysis method was carried out as per the international guidelines ISO/IEC 17025:2005. The parameters assessed were linearity, precision, accuracy, LOD and LOQ.

2.7.1 Accuracy

The accuracy of the method was evaluated in triplicate at three concentration levels 50%, 100% and 150 % of test concentration 10 mg/mL. The percentage of recoveries were calculated from the slope and Y-Intercept of the calibration curve. The accuracy study of metals was carried out in triplicate at 50%, 100%, & 150% of specification level (0.1%) to the Ingenol mebutate analyte concentration (1000 μ g /mL).The percentages of recoveries for metals were calculated from the slope and Y-Intercept of the calibration curve

2.7.2 Precision

The precision of the elemental method was evaluated by carrying out six independent preparations of Ingenol mebutate (each metal) test samples against internal standard and calculate the %RSD of metals.

2.7.3 Linearity

The purpose of the test for linearity is to demonstrate that the entire analytical system exhibits a linear response and is directly proportional over the relevant concentration range for the target concentration of the analyte. The linear regression data for the calibration plot is indicative of a good linear relationship between metal area and concentration over a wide range. The correlation coefficient was indicative of high significance.

2.7.4 Limit of Detection & Limit of Quantitation

The LOD can be defined as the smallest level of metal ion that gives a measurable response and LOQ was determined as the lowest amount of analyte that was reproducibly quantified. These two parameters were calculated using the formula based on the standard deviation of the response and the slope. LOD and LOQ were calculated by using equations, LOD= $3.3 \times SD/S$ and LOQ= $10 \times SD/s$, where SD = standard deviation, S= slope of the calibration curve.

2.7.5 Solution stability:

The solution stability of Ingenol Mebutate in the heavy metals method of 10J Solution shall be used on the same day of preparation. (Valid up to 24 hrs)

Standard		Intensit	y																
Concentr	a	Rh		Ir		Bi		V		Ru		Pd		Pt	Sb		Sn	Mo	Os
tion																			
in ppb																			
10		234044.	3	198	158.	2548	79.	4091	4.	37027	<i>'</i> .	50979	-	75436.	43499.		35252.	20025.	56587.2
				2		6		8		6		1		3	8		4	6	
20		469357.	1	394	103.	5078	77.	7874	2.	74564	ŀ.	10299	7	147383	85529.		70286.	40340.	112479.
				7		2		4		1		.0		.4	6		8	4	5
25		569049.	6	481	786.	6120	50.	9386	1.	90004	ŀ.	12439	4	179652	103438	8	85281.	49027.	136065.
				5		6		3		0		.7		.2	.8		5	9	3
30		661969.	4	561	419.	7186	31.	1099	84	10615	53	14610	2	210510	122873	3	100048	57684.	159386.
				3		4		.8		.0		.0		.8	.8		.8	7	5
40		886418.	3	747	979.	9499	81.	1451	18	14028	34	19510	2	280349	162924	4	132582	77083.	211649.
				8		8		.0		.4		.7		.8	.1		.8	9	6
50		1084558	3.3	917	704.	1166	62	1771	80	17326	66	24004	6	343275	200457	7	162956	94142.	259725.
				9		3.4		.0		.8		.1		.0	.3		.1	9	7
Std Error	.	10672.8	99	774	5.86	1041	9.2	1572	.5	1401.	0	2036.3	3	2450.5	1179.9)	1338.0	847.21	2209.70
				9		25		41		43		81		78	74		71	6	9
Slope		21149.5	26	178	98.8	2263	2.5	3387	.3	3379.	3	4698.8	3	6679.5	3913.3	;	3173.1	1848.0	5048.87
				31		26		51		15		80		25	10		92	63	1
LOD		1.514		1.29)8	1.381		1.393	3	1.244		1.300		1.101	0.905		1.265	1.375	1.313
LOQ		5.046		4.32	28	4.604	L I	4.642	2	4.146		4.334		3.669	3.015		4.217	4.584	4.377
Standar	In	tensity	Star	ndar	Inte	nsitv	Sta	ndar	In	tensi	St	andar	Ir	ntensit	Standar	П	ntensit	Standar	Intensity
d		eensreg	d				d		tv		d		v		d	v		d	11100115105
in ppb	Ni	i	in p	pb	Cu		in p	opb	As		in	ppb	C	d	in ppb	H	[g	in ppb	Pb
50	31	2832.1	100	-	7823	24.6	0.1	50	34	8.0	2	50	66	560.8	1 50	4	182.6	0.50	7637.4
20	51	2032.1	100		,023	21.0	5.1	50	54	0.0	2	50	00	500.0	1.50	т. 	102.0	0.20	,
100	63	1212.1	200		1573 8	525.	0.3	00	69	7.7	5.0	00	13	3329.5	3.00	82	257.7	1.00	14980.9
125	76	59934 <u>6</u>	250		1919	644	03	75	78	5.0	6	25	16	5063 5	3 75	10	0107.6	1.25	18150.5
140	,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	250		7		0.5	,5	, 0.	5.0	0.		10	3003.5	5.15		0107.0	1.25	10150.5

 Table 4- Limit of Detection and Limit of Quantification

 LOD & LOQ Values

Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS)...

150	908459.4	300	2951868. 6	0.450	929.4	7.50	19121.2	4.50	11971.3	1.50	21048.8
200	1211043. 3	400	3921524. 1	0.600	1250.7	10.00	25508.5	6.00	15723.6	2.00	27892.9
250	1490363. 3	500	4844122. 1	0.750	1551.4	12.50	31638.6	7.50	19492.6	2.50	34184.9
Std	10588.68	Std	212542.5	Std	26.493	Std	185.526	Std	107.731	Std	322.370
Error	9	Error	50	Error		Error		Error		Error	
Slope	5864.973	Slope	10623.20	Slope	1979.34	Slope	2486.71	Slope	2536.71	Slope	13176.74
_		-	5	_	5	-	2	-	6	-	9
LOD	5.958	LOD	66.024	LOD	0.044	LOD	0.246	LOD	0.140	LOD	0.081
LOQ	18.054	LOQ	200.074	LOQ	0.134	LOQ	0.746	LOQ	0.425	LOQ	0.245

Linearity: Using calibration solutions calibration curves: y = ax + b, were determined, where y is the signal intensity and x is the know concentration of the given analyte in the calibration solution. The linearity of the calibration curve was considered acceptable when the correlation factor R > 0.995 (Table 5).

Table 5- Linearity Data										
Element	Correlation coefficient	Element	Correlation coefficient							
Rh	0.99509	Cd	0.99996							
Ir	0.99547	Pt	0.99997							
Bi	0.99586	Hg	0.99997							
Ni	0.99777	Sb	0.99997							
Cu	0.99978	Sn	0.99998							
V	0.99996	Pb	0.99997							
As	0.99985	Mo	0.99997							
Ru	0.99995	Os	0.99992							
Pd	0.99997									

Table	6-	Accuracy	Data
-------	----	----------	------

Element	Test + 50%	% Recovery	Test + 100%	% Recovery	Test +1 50%	% Recovery
	spike		spike		spike	
Sample Weight	101.77 mg	NA				
Rh	2.657	104	5.761	100	12.013	102
Ir	2.715	105	5.961	99	12.061	104
Bi	2.625	102	6.546	85	11.818	102
Ni	13.279	103	37.287	124	55.584	103
Cu	33.257	105	71.264	107	108.643	106
V	4.887	99	9.941	102	14.963	101
As	0.059	100	0.115	110	0.178	103
Ru	4.838	99	9.714	100	14.644	100
Pd	4.636	101	9.153	102	13.751	102
Cd	0.998	101	1.982	107	2.986	105
Pt	4.449	101	9.056	100	13.296	103
Hg	0.551	100	1.108	106	1.664	106
Sb	4.033	101	8.064	109	12.270	105
Sn	5.31	101	10.168	103	14.929	103
Pb	0.262	89	0.539	95	0.755	92
Мо	5.132	101	10.309	103	15.417	102
Os	4.789	100	9.714	98	14.409	102

III. **Results and Discussion**

To establish and validate an efficient method for elemental analysis of Ingenol mebutate in Active pharmaceutical ingredients, preliminary tests were performed. Different spectrometric conditions were employed for the analysis of the Ingenol mebutate active pharmaceutical ingredients. Finally the analysis was performed by using diluent: Conc HNO3 and Conc HCl in the ratio of 31mL and 17Ml into 1000 mL of Milli O water The proposed method was optimized to give very reliable results. The optimized spectrometric operating conditions were given in table 1.

Precision was evaluated by a known concentration of metal ions of Ingenol mebutate was injected six times and corresponding areas were recorded and % RSD was calculated and found within the limits. The low % RSD value was indicated that the method was precise and reproducible. Accuracy of the method was proved by performing recovery studies of Ingenol mebutate for each metal ions thrice at 50%, 100% and 150%, level. Recoveries of each metal namely (Cd, Pb, As, Hg, Ir, Pd, Pt, Rh, Ru, Os, Mo, Ni, V, Cu, Sn, Sb, Bi ranges from 75% to 126% in proposed method and the results were shown in the (Table 6).

Linearity was established by analyzing different concentrations for metals of ,Ir, Pd, Pt, Rh, Ru ,Os, Mo, V., Sn, Sb, Bi 10%, 20%, 25%, 30%, 40% and 50% level and Ni, Cu, As ,Cd, Hg & Pb 50%,100%,125% 150%,200%,250% of Ingenol mebutate metal ions. The calibration curve was plotted with the area obtained versus concentration of Ingenol mebutate metal ions. In the present study concentrations were chosen ranging between 10ppb to 250 ppb of Ingenol mebutate metal ions. The linear regression data for the calibration plot is indicative of a good linear relationship between peak area and concentration over a wide range. The correlation coefficient was indicative of high significance and the results were shown in the (Table 5)

IV. Conclusion

A new ICP-MS method has been developed for seventeen trace metals of Ingenol mebutate namely Cd, Pb, As ,Hg ,Ir, Pd, Pt, Rh, Ru ,Os, Mo, Ni, V, Cu, Sn, Sb, Bi in Active pharmaceutical in gradients. The developed method was validated and it was found to be selective, precise, accurate and linear it can be used for the routine analysis of Ingenol mebutate in Active pharmaceutical ingredients. Several parameters have been taken into account and evaluated for the validation of method: the limit of detection ranged between (0.0044– 66.024) for the 17 metals studied ensures the minimum limit of quantification required for 17 Determination of metals in Ingenol mebutate by ICP-MS (0.245–0200.074); good linearity (correlation factor R > 0.995).

The validation studies were carried out in accordance with international guidelines ISO/IEC 17025:2005. Finally it was concluded that the method is simple, selective, and cost effective and has the ability to detect all seventeen metals of Ingenol mebutate found in Active pharmaceutical in gradients.

Quantitative analysis by ICP-MS has been proven to be a powerful tool for rapid determination of elements and the method is particularly useful for the analysis of elemental impurity samples.

Acknowledgements

We would like to thank Dr. J. Srikanth from MSN Labs Pvt Ltd, Hyderabad, India and Dr.K.Vanitha Prakash from SSJ College of Pharmacy, Hyderabad, India, for giving good support.

References

- ICH Q2 (R1), Validation of Analytial procedures, Text and Methodology, International Conference on Harmonization. Geneva. 2005. p. 1-17.
- [2]. Maria Chudzinska Anna Debska •Danuta Baralkiewicz, Method validation for determination of 13 Elements in honey samples by ICP-MS, Springerlink.com, Accred Qual Assur (2012) 17:65–73
- [3]. C. Voica1, a. Dehelean1, A. Iordache, I. Geana, Method validation for determination of metals in soils by ICP-MS, Romanian Reports in Physics, Vol. 64, No. 1, P. 221–231, 2012
- [4]. Cezara Voica, Adriana Dehelean and A Pamula, Method validation for determination of heavy metals In wine and slightly alcoholic beverages by ICP-MS, Journal of Physics: Conference Series **182** (2009) 012036
- [5]. ISO (1993) Guide to the expression of uncertainty in measurement (GUM). International Organization for Standardization, Geneva; also JCGM 100:2008
- [6]. EURACHEM/CITAC (2000) Quantifying uncertainty in analytical measurement, 2nd edn. LGC, Teddington
- [7]. Koellensperger G, Hann S, Nurmi J, Prohaska T, Stingeder G (2003) J Anal At Spectrom 18:1047–1055
- [8]. Kment P, Mihaljevic M, Ettler V, Šebek O, Strnad L, Rohlova L 2005 Food Chem. 91 157-65.
- [9]. Ammann A A 2007 J. Mass Spectrom. 42 419-27
- [10]. ISO 9004-4:1993, Total Quality Management. Part 2. Guidelines for quality improvement. ISO, Geneva (1993).
- [11]. ISO/TS 28037:2010, Determination and use of straight-line calibration functions. ISO, Geneva (2010).
- [12]. ISO/IEC 17025:2005 A General requirements for the competence of testing and calibration laboratories
- [13]. Elemental impurities USP 39, General Chapters USP <232> (Limits) and <233>
- [14]. Erika Matoso; Solange Cadore, Development of a digestion method for the determination of inorganic contaminants in polyvinyl acetate (PVAc), Journal of the Brazilian Chemical Society vol.19 no.7 São Paulo 2008
- [15]. kazuhiro_sato kaoru_fujimoto, Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification, Catalysis_Communications Volume 8, Issue 11, 2007, Pages 1697–1701