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Abstract: Generation theory was developed as a tool for studying self-reproducing systems. In this 

paper we show that this theory can be applied to a search for common ancestors of living organisms. 

We give two algorithms with flowcharts in pseudocode for finding common ancestors of a set of 

microbes and describe the connections with the genography problem. 
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I. Introduction 
This paper describes certain aspects of Genography, which proposes on the basis of fossil and genetic 

evidence to make specific statements on the origin of groups and species. Examples of such statements are: all 

modern members of group X  living in  location  L  descend  from  N  individuals  that  lived  Y  years  ago  in  

location M , or species  X  and species  Y   have a common ancestor from  which they branched     Z years ago. An 

instance of the first statement is implied in [13], which claims that all European humans are descendants of 

seven women who lived in Africa 45,000 years ago. An instance of the second statement is implied in [14], 

which claims that gorillas and chimpanzees have a common ancestor, from which they branched around 

5,000,000 years ago. 

Genography is motivated by a deep-seated human search for the origin of species. In the case of humans, 

IBM and the National Geographic Magazine are running the Genographic project, about which information is 

available at the National Ge- ographic website [16]. The study published by the Genography Consortium in [1] 

contains extensive bibliography supporting the project. 

However, in spite of the numerous appearances in popular science publications, Genography has not 

received rigorous scientific scrutiny. Even though there is a number of papers criticizing the genography project 

on moral and ethical grounds (see, for example, [15]), the author had not been able to find scientific analysis of 

the project in print. The purpose of this paper is to fill this gap. 

We exhibit a careful mathematical analysis of the plausibility of the basic claims made by Genography 

and show that the problem is mathematically ill-posed. This analysis is novel and constitutes the original 

contribution of this paper. The analysis is especially interesting in view of a current discovery, reported in [5], of 

another new hominin species, namely australopithecus deyiremeda, which lived about 3.5 millions years ago. 

In the nineteenth century, mathematician Jacques Hadamard defined a well- posed problem as a 

mathematical model of physical phenomena with the following properties: 

(1)A solution exists.  

(2)The solution is unique. 

(3)The solution depends continuously on data in some reasonable topology. Problems that are not well-posed in 

the above sense are said to be ill-posed. Well- 

posedness is an important technical concept because data are often corrupted by 

random measurement errors. Hence, when a problem is ill-posed, such measurement errors, even though they may 

be small, can cause large changes in the solution, making it meaningless. On the other hand, when a problem is 

well-posed, its solution can be reliably computed using a stable numerical algorithm, in spite of small 

measurement errors in the data. A common method for dealing with ill-posed problems is to reformulate them 

with additional assumptions in a process known as regularization, to make them well-posed. 

The technical approach of this paper uses Generation Theory, which was intro- duced in [7] to analyze self-

reproducing systems. Within the framework of Gener- ation Theory the following original results are obtained 

about Genography: 

(1) Genography is ill-posed. 

(2) It is possible to regularize the original Genography problem so that it be- comes well-posed. 

(3) We exhibit two algorithms for the solution. 

The remainder of this paper is as follows: we present an overview of Generation Theory and introduce a problem, 
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called Microbes in a jar, which shows that Genog- raphy is ill-posed. Then we formulate a regularized Microbes 

in a jar problem, and give two algorithms with flowcharts in pseudocode for solving it. 

 

Background in Self-Reproducing Systems. 

 The paper [7] is devoted to a study of self-reproducing systems. The idea goes back to von Neumann, 

who discussed cellular automata capable of building other cellular automata in [9]. The subject proved to be a 

fruitful ground for research. For a survey of existing literature and current developments see [3], [8], [10], and 

[12]. In the framework of generation theory, the entities that can potentially reproduce are called machines, 

regardless of their physical nature (e.g. robots, microbes, or lines of computer code). Reproduction is 

achieved by the action of a machine on available resources, producing an outcome that may or may not be a 

machine itself. A generation system is defined as a quadruple (U, M, R, tt), where U is a uni- versal set that 

contains machines, resources, and outcomes of attempts at self- reproduction. M U  is a set of 

machines, R U is a set of resources that can be used for self-reproduction, and tt : M R U is a 

generation function that maps 

a machine and a resource into an outcome. 

The generation sets are defined as follows: M0 = M is the set of all machines and Mi+1 is the set of all 

machines that are capable of producing a machine in Mi. It was shown in [7] that the generation sets are nested, 

i.e. M0 ⊇  M1 ⊇  M2 ⊇  · · · , which leads to the definition: M∞ = ∩Mi. All self-reproducing machines belong to 

M∞. 

 In this paper we show that generation theory can be applied to study repro- duction of microbes and 

describe the connections with the genography problem. 

 

Levenstein metric. 

 For our purposes a living organism is represented by its DNA. We assume that a DNA is a finite 

sequence of symbols chosen from the alphabet of 4 letters: A, C, tt, and T . 

Levenstein metric ρ, which is a generalization of the Hamming metric, on a set of DNA is defined as follows. 

(1) For any two sequences of equal lengths S = (s1, · · · , sn) and R = (r1, · · · , rn) define ρ(S, R) = 0 if si = 

ri for all 1 i n. Define ρ(S, R) = 1 if the sequences differ in exactly one coordinate. Define 

ρ(S, R) = m if the se- quences S and R differ in exactly m coordinates. 

(2) If S can be obtained from R by either deleting or inserting one coordinate, define ρ(S, R) = 1. 

(3) If the sequence S can be obtained from R by changing k coordinates and deleting or inserting m 

coordinates, define ρ(S, R) = min(k + m), where the minimum is taking over all possible choices of k and m. 

Example 1. Let S = ACCttCA and R = CT ttA. By observation, the shortest way to obtain R from S is 

to delete the first and the fifth letters in S and to change the third letter from C to T . Hence ρ(S, R) = 

3. 

It is easy to see that for any sequences S and R, ρ(S, R) = 0 if and only if S = R. Moreover, as ρ(S, R) = ρ(R, 

S), it follows that ρ is symmetric. 

Note that ρ satisfies the triangle inequality. Indeed, if S, R, and T are sequences with ρ(S, R) = m and ρ(R, T ) = 

n, we can transform S into R in m steps, and R into T in n steps, where a step consists of either deleting or 

inserting a coordinate, or of changing a coordinate. Hence we can transform S into T in m + n steps, 

therefore ρ(S, T ) m + n, proving the triangle inequality. So ρ is, indeed, a metric on the set of DNA 

sequences. 

Note that if S and R have equal lengths, then ρ(S, R) is the Hamming distance between S and R. 

The motivation for the use of the Levenstein metric comes from the fact the two most common types of 

mutations in DNA are deletion or insertion of a letter in the sequence, or substitution of a different letter for a 

given one. The first type of mutation is called a frame-shift mutation and the second type of mutation is called a 

point mutation. The letters in the DNA sequences are called the nucleotides. For more information on mutations 

see [4] and [6]. 

To simplify the exposition we would like to define an induced semi-metric on the set of living organisms 

by ρ(O1, O2) = ρ(DN A(O1), DN A(O2)), where O1  and O2  are any organisms. This is a semi-metric because 

distinct organisms can, a priori, have identical DNA. 

 

Microbes in a jar. 

 Consider a sealed jar containing liquid, whose chemical composition and tem- perature do not depend 

on time. This liquid is the set of resources R, so R is a singleton. Let M be the set of DNA of all microbes, i.e. 

one-celled organisms, which ever lived in this jar. M is the set of all machines in the problem. M has a 

decomposition M = M 
a
  M 

d
, into subsets of alive and dead microbes.  We define a generation function tt : M 

a
     

R      (M 
d
     M      M ) by  tt(m

a
, r) = (m

d
, m1, m2). So the generation process takes a living microbe m

a
 and 

produces, by division, two new microbes m1 and m2. The original microbe m
a
 dies in the process, so 
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the output of the generation function contains m
d
, to remind us that the original microbe does not survive the 

reproduction. We require the following property. 

 

The Small Mutations Property. 

 Assume that there exists a constant s = s(M ) > 0,  which does not depend on   a particular m in M , 

such that if tt(m, r) =  (m
d
, m1, m2)  then  ρ(m, m1) < s  and ρ(m, m2) < s. This requirement reflects an accepted 

empirical fact that in the absence of radiation mutations are not large. For example, such mutations cannot 

produce a two-celled organism, so an offspring of a microbe is a microbe. Note that two different microbes 

might have identical DNA, and as a consequence, we cannot identify microbes with their DNA, so any metric on 

the DNA will be only a semi-metric on the set of microbes. It implies that identical twins and genetic loops are 

theoretically possible. (A genetic loop will appear if a sequence of generations starting from some machine m 

will produce m.) 

 

Problem formulation and a connection with Genography. 

 We want to know how many microbes were in the set M 
∗

 that generated M , what was their genetic 

makeup, and how many generations passed between M 
∗
 and M .  We  are given the set M 

a
 of all microbes 

currently alive and a subset M 
f
 of   M 

d
, which is a set of fossils. M 

f
 is usually very small relative to M 

d
. In 

addition, for another small subset M 
j
 of M  we  are given the set tt

−1
(M 

j
, R), so M 

j
 is the  set of microbes for 

which we know the parent. This is exactly the description of the genography problem. We know humans that are 

currently alive in a certain location, we know some of their ancestors, we know some of the family trees, and we 

want to obtain data about the first humans in this location. 

 

Remarks. 

(1) Only alive microbes can reproduce, however their offspring might die at birth. 

(2) In this simple model we allow a microbe to die either at birth or after reproduction. No microbe survives 

reproduction. 

(3) M 
∗
 can be characterized as follows: m ∈  M 

∗
 ⇔ {m has no parent in the jar}. 

 Note that the length of the DNA of a virus is about 4 10
4
 nucleotides, for the microbe E. coli it is about 

4.7 10
6
, and for humans it is about 3 10

9
. Under typical laboratory conditions E. coli reproduces every 20 min. 

 For E. coli the number of errors in DNA per replication under normal laboratory conditions before the 

error correction code starts working is about 1. The error correction code is very efficient and under normal 

laboratory conditions it results in one mistake per about 1000 replications, so a single mutation appears every 2 

days. 

 

An Approach to the Solution. 

 This problem is a typical example of reverse modeling, when we are given con- ditions in the present,  

and need to reconstruct the conditions in the past. It  is well-known that the usual statistical methods are 

reasonably reliable only for short time intervals, so the first task is to estimate the time interval involved. 

Assume that the original microbes belong to a single species, so they reproduce at the same time interval T . 

Recall that the diameter of a set X is defined as 

diam(X) = sup ρ (xi, xj) xi, xj X . 

We assume that the small mutation property holds. 

 Let Diam(M 
∗

) = µ ≥ 0, and let s be as in the definition of the small mutation property. Then if m1 and 

m2 are microbes in the jar, and n1 and n2 are their respective parents, the triangle inequality implies that ρ(m1, 

m2) ≤ ρ(m1, n1) + ρ(n1, n2) + ρ(m2, n2). The small mutation property states that ρ(m1, n1) < s and ρ(m2, n2) < s, 

hence with each generation the diameter of the set of microbes in the jar increases by at most 2s. So the diameter 

of the K-th generation is bounded by µ + K 2s. 

Determine all the pairwise distances between the elements of M 
a
 and, consecu- tively, the diameter of M 

a
. 

 If diam(M 
a
) = µ + J 2s,  then the lowest bound on the number of generations  in the jar is J. Hence the 

original population lived at least J T [time units] ago, where T is the time interval between microbe divisions. 

(For example, T = 20 min for amebae.) 

This estimate is very crude and it is easy to build models for which it is arbitrarily poor. 

 

Example 2. If each replication produces one dead microbe and one alive microbe with the exact DNA of the 

parent, then diam(M 
a
) = diam(M 

∗
) = µ, and the above estimate implies that J = 0, however, the number of 

generations may be arbitrarily large. 

So Example 2 illustrates that genography is ill-posed. 

Example 3. Assume that the replication is exact, and M 
a
 contains exactly 8 mi- crobes with identical 

DNA. We cannot decide whether M 
∗

 consisted of 4 microbes and J = 1, or M 
∗
 contained one microbe and 
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J = 3. 

Example 3 shows once more that genography is ill-posed and that we need to make a guess either about M 
∗
 or 

about J, or about both. 

Assume that we have established the values of J and of diam(M 
∗
). 

In order to describe the set M 
∗

, we assume that it is located in the center of the set M 
a
 and that M 

a
 is 

approximately a metric ball. Statistically speaking, we assume that all mutations have equal probability and that 

the lethal mutations are random. 

A naive way to find the center of M 
a
 is to consider a pair of elements m1 and  m2 such that the distance between 

them equals to the diameter of M 
a
, and find  an element or elements in M 

a
 whose distance to each of m1, m2 is 

closest to the half of the diameter of M 
a
. This procedure would usually produce several answers. The next 

example shows that, unfortunately, the possible centers obtained in this way might be as far apart as the 

original points. 

 

Example  4.  Consider the sequences (0000) and (1111).  As ρ((0000), (1111)) = 

4, ρ((0011), (0000)) = 2, and ρ((0011), (1111)) = 2, the sequence (0011) is half-way 

between (0000) and (1111). However, ρ((1100), (1111)) = 2, and ρ((1100), (0000)) = 

2, so the sequence (1100) is also half-way between (0000) and (1111). 

But ρ((1100), (0011)) = 4. 

Assume that we have found possible centers of the set M . Run J iterations of the generating function tt on a 

metric ball of diam(M 
∗
) around each candidate center, then check which output fits the set M 

a
 best. 

Alternatively, consider the frequencies of the DNA in M 
a
 and assume that the most frequent ones define the 

center. However, it is possible that each DNA in M 
a
 is carried by only one microbe. Then we might want to check 

DNA frequencies of small balls in M 
a
, but at the end we will need to make a guess about M 

∗
 and to run 

forward simulations. 

 

Remarks. 

(1) The sets M 
f
 and M 

j
 are used to check the model. They are useful in estimating J. It will be shown in the 

next section that if these sets are maximal, then the problem has an exact solution. 

(2) As the accuracy of the statistical methods involved declines when J grows, many genography-type results 

are not widely accepted by the scientific community. 

(3) The assumption that all mutations have the same probability to be lethal  is unrealistic. It seems that the 

lethal mutations should be localized in certain directions. 

 

Regularization of the Problem. In order to regularize the problem we need to introduce a very strong 

assumption. 

 

Condition UI (Uniqueness of Individual). 

We assume that ρ, defined above, is a metric on the set of living organisms, and not just a semi-metric, 

i.e.  ρ(O1, O2) = 0     O1  = O2, so the function from the     set of organisms to the set of DNA is injective. 

Alternatively, we can define an individual as an equivalence class, but such approach is rather non-intuitive. 

We consider the same setting as before, namely, there exists a jar in the lab- oratory which contains 

liquid, and the chemical composition and temperature of the liquid do not depend on time. This liquid is the set 

of resources R. Let M be the set of DNA of all microbes which ever lived in this jar. However, we demand that 

the system satisfies condition UI. Consecutively, to simplify the exposition, we identify a DNA sequence with 

its carrier. 

We consider the same set of machines and the same generating function, tt : M 
a
 × R → (M 

d
 × M × M 

) given by tt(m
a
, r) = (m

d
, m1, m2). Note that condition UI implies that m

d
 ƒ= m1 ƒ= m2. 

We want to identify the set M 
∗
 of microbes which started M , i.e. the first microbes which appeared in 

the jar. 

The following approach to the solution of the problem was developed by the author. 

Assume we know all the microbes which ever lived in the jar and their offspring. To be precise, we are 

given the set M = {m1, · · · , mN }, as an ordered list. We also are given the set r(M ) = tt(M, R) as the ordered 

list of L pairs {(mi, ni)} ∈  M ×M , ordered by the first coordinate, where mi is a parent of ni. As each microbe 

in the jar has either 2 offspring or no offspring at all (the latter happens for microbes in M 
a
), any mi M can 

appear as the first coordinate of a pair on the list r(M )  exactly twice. As each microbe in the jar has at most one 

parent in the jar (the microbes without a parent in the jar are exactly the set M 
∗

), any ni M  can  appear as the 

second coordinate of the list at most once. 

We solve the problem by constructing the following graph Γ: the set of vertices of Γ is M and there is a 

directed edge from m1 to m2  if and only if m1  is a parent  of m2. Recall that the degree of a vertex in a graph is 
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the number of edges attached to it. Also recall that a graph is a tree if it does not contain loops. 

Assume Γ is constructed. As condition UI implies that there are no genetic loops, Γ is a forest, i.e. a 

collection of disjoint trees. Note that if m is alive, it has not reproduced yet, so for any live microbe deg(m
a
) = 1. 

In other words, the only edge attached to any living microbe in Γ is the edge connecting it to its parent. The 

same is true if m was born dead, thus could not reproduce. Also note that deg(m) = 2    m    M 
∗

, because only in 

this case m has 2 offspring, but no parent  in the jar. In all other cases deg(m) = 3. 

We offer two algorithms for the construction of Γ. The algorithms will output the set M 
∗
 as an ordered list. 

 

Solution 1: Going forward in time. 

This solution does not use the small mutation property and is very general. Choose any m1  M ,  check  

who are its offspring,  if any,  and connect  m1  to each of its offspring by a directed edge.  Repeat this procedure 

with the offspring of  m1. At each step the number of offspring may grow exponentially, but still there are only 

finitely many of them. After a finite number of iterations we will stop, constructing a graph Γ1. If the set of 

vertices of Γ1 is M , then Γ1 = Γ. In this case  Γ is a tree, and M 
∗
 = m1. Otherwise, choose m2 which is not a 

vertex of Γ1 and repeat the process. After a finite number of steps we construct Γ, and we know that deg(m) = 2 

m M 
∗

. 

Below is a flowchart of this algorithm in pseudocode, where L is the length of the list r(M ), and (mi, ni) are 

elements of r(M ).  

 

 
 

Solution 2: Going backward in time. 

 This solution uses the small mutation property. We assume that we can generate balls of radius s in M , 

meaning that for any mi ∈  M we are given an ordered list Bi  of  all  bij    in  an  s-ball  around  mi.  Clearly  the  

length  of  each  Bi  is  bounded  by the length of M . Choose any m1 ∈  M and check who is its parent. The small 

mutation property implies that the parent belongs to the list B1, so to find the parent we need to check the 

offspring of all microbes in B1.  Connect the parent  to m1 and repeat the step with the parent of m1. The process 

terminates after finitely many steps, when we arrive at a microbe without a parent. Such microbe is an element 

of M 
∗

. Call the graph constructed in the process Γ1. If Γ1 = Γ, then the set M 
∗
 is a singleton. Otherwise, 

choose m2 which is not a vertex of Γ1 and repeat the process. After a finite number of steps we construct Γ, and 

we know that deg(m) = 2 m M 
∗

. 

Below is a flowchart of this algorithm in pseudocode, where L is the length of 

r(M ), and bij   ∈  Bi. 
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The output for both algorithms is given by identical pseudocode shown below. 
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