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Abstract
Huntington’s disease (HD) is a neurodegenerative disorder driven by expanded polyglutamine (polyQ) repeats 
in the huntingtin protein. The crystal structure of Htt36Q3H (PDB ID: 4FED) reveals critical β-sheet 
conformations implicated in toxic protein aggregation. This study proposes an innovative approach combining 
next-generation sequencing (NGS) and machine learning (ML) to investigate the structural dynamics and 
genetic variations of the Htt36Q3H region in HD. Using NGS, we aim to sequence the HTT gene across diverse 
patient cohorts to identify variations in polyQ length and associated mutations. These genomic data will be 
integrated with ML models, including deep neural networks and graph-based algorithms, to predict how 
sequence variations influence the conformational stability of Htt36Q3H, as observed in its α-helix, loop, and β-
hairpin structures. By training on the 4FED structural data and related polyQ protein structures, our ML 
models will infer potential toxic interactions between the Htt36Q3H β-strand and aromatic residues, as well as 
predict aggregation propensity. This integrative approach aims to uncover novel genotype-phenotype 
correlations, enhance our understanding of HD pathogenesis, and identify therapeutic targets to mitigate 
protein misfolding. The findings could pave the way for personalized medicine strategies in HD and other 
polyQ disorders.
Keywords: Huntington’s Disease, Htt36Q3H, Crystal Structure, Next-Generation Sequencing, Machine 
Learning, Polyglutamine, β-Sheet Conformation, Structural Dynamics, Genotype-Phenotype Correlation
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I. Introduction
Huntington’s disease (HD) is one of the most extensively studied polyglutamine (polyQ) expansion 

disorders, marked by progressive neurodegeneration, cognitive impairment, motor dysfunction, and psychiatric 
disturbances.[1] The underlying molecular cause of HD is a trinucleotide repeat expansion in the HTT gene, 
which codes for the huntingtin protein. Normal alleles typically have between 10 and 35 CAG repeats, whereas 
pathogenic alleles contain more than 36, often extending to 100 or more. This expansion results in an 
abnormally long polyglutamine tract within the N-terminal region of the huntingtin protein, making it prone to 
misfolding, aggregation, and aberrant interactions with other cellular proteins. The pathological hallmark of HD 
is the accumulation of mutant huntingtin aggregates in neuronal nuclei and cytoplasm, which contributes to 
synaptic dysfunction, mitochondrial impairment, and ultimately, neuronal death. [1,2]

Expansions in polyglutamine tracts and conformational changes
At a molecular level, the expanded polyQ tract triggers transitions from native, flexible conformations 

to structures rich in β-sheets, which form toxic amyloid fibrils. PolyQ expansion affects both local structural 
features and the overall folding landscape, promoting the formation of oligomers and aggregates. However, the 
conformations adopted by huntingtin are varied, short-lived, and difficult to capture experimentally. The 
complexity is further increased by the influence of flanking sequences, post-translational modifications, and 
interaction partners, which all modulate the kinetics of aggregation and toxicity. [3,4,5]

Importance of structural biology in HD research
The structural characterisation of huntingtin and its fragments have been a persistent challenge due to 

their size, flexibility, and propensity to aggregate. Among the available structural resources, the Protein Data 
Bank (PDB) entry 4FED provides a valuable atomic-resolution model of the huntingtin protein in a truncated 
form [6,21,22] This structure serves as a reference point for computational modelling of conformational 
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changes associated with polyQ expansions. By integrating structural models such as 4FED with sequence-
derived features from next-generation sequencing (NGS) data, it becomes possible to link genotype (CAG 
repeat number) with phenotype (conformational states and aggregation risk). [6,7,8]

Next-generation sequencing (NGS) in detecting polyQ expansions
Next-generation sequencing technologies have transformed genomics by enabling rapid and accurate 

analysis of trinucleotide repeat expansions. Traditional PCR-based and Sanger sequencing methods often 
struggle to resolve long, unstable repeat tracts due to slippage and the formation of secondary structures.[9] In 
contrast, NGS platforms such as Illumina, PacBio, and Oxford Nanopore offer scalable solutions for identifying 
repeat lengths, heterozygosity, and somatic mosaicism across tissues. Furthermore, NGS data enables the 
extraction of additional genomic features—such as flanking sequence context, GC content, codon usage 
patterns, and potential RNA secondary structures—that influence the stability and expression of expanded 
polyQ tracts. [10] These data-rich features present an opportunity for advanced computational models to predict 
not just the number of repeats, but also the likely conformational fate of the protein products they encode. [11]

Machine learning in polyQ expansion research
Machine learning (ML) has emerged as a game-changing approach in computational biology, offering 

effective methods to uncover hidden patterns in complex datasets. [12,13] In the context of polyQ disorders, 
ML models can combine multidimensional data, including repeat counts, sequence features, structural 
descriptors, and biophysical parameters, to classify samples into pathogenic vs. non-pathogenic categories or 
predict conformational outcomes. Algorithms such as support vector machines (SVMs), random forests, and 
deep learning architectures are particularly well-suited for identifying non-linear relationships between 
genotype and phenotype.[14,15]  By training on annotated datasets, ML models can generalise to predict 
conformational states for unseen sequences, enabling both mechanistic insights and translational 
applications.[16,17]

Understanding the different conformations of huntingtin, especially when expanded polyQ tracts are 
involved, is key to understanding how the disease progresses. Typically, native-like conformations consist of 
disordered but soluble structures. However, pathogenic expansions tip the balance towards insoluble β-sheet 
aggregates. To predict these conformational transitions computationally, it's necessary to bring together multiple 
data layers:
1. NGS-derived repeat expansions (quantitative measures).
2. Properties of flanking sequences (stabilising or destabilising influences).
3. Structural templates like PDB 4FED, which serves as a reference for 3D folding.
4. Biophysical parameters including hydrophobicity, flexibility, and propensity to aggregate.

Machine learning models can combine these diverse inputs to generate probabilistic predictions of 
conformational outcomes, distinguishing between normal, borderline, and pathogenic states.[18]
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Previous studies have applied computational approaches to model polyQ aggregation kinetics or to 
simulate the structural effects of expansions. However, most efforts remain either purely theoretical or limited to 
molecular dynamics simulations of isolated peptides. While these studies provide important mechanistic 
insights, they often lack integration with patient-derived next-generation sequencing data and rarely leverage 
the predictive power of machine learning. Moreover, no standardised framework currently exists for linking 
sequence expansion patterns to experimentally validated structural models, such as 4fed. This represents a 
critical gap in both basic research and translational medicine, where predictive biomarkers could inform 
diagnostics, prognosis, and the development of therapies.[19,23.24]

The present study aims to bridge these gaps by developing an integrative machine learning framework 
that combines NGS-derived polyQ expansion data with structural insights from PDB ID 4fed. Specifically, we 
set out to: Process and analyse NGS datasets to extract CAG repeat lengths and sequence-derived features. Use 
structural data from 4FED as a reference for modelling conformational transitions. Train and evaluate machine 
learning models (Random Forest, SVM, and deep learning) to predict conformational states linked to normal 
versus pathogenic huntingtin. Show the value of this framework by implementing it through coding in Google 
Colab using Python and BioPython. Develop an open-source pipeline that can be tailored to other polyQ 
expansion disorders.

Forecasting the conformational states of huntingtin based on NGS data has significant implications for 
both research and clinical practice. From a research standpoint, such predictions can speed up the identification 
of molecular determinants of aggregation and toxicity. Clinically, incorporating predictive models into 
diagnostic pipelines could enhance early detection, patient stratification, and personalised therapy design. 
Furthermore, the computational efficiency of ML models makes them suitable for deployment in large-scale 
population studies and clinical genomics workflows.[20]

In summary, Huntington’s disease exemplifies the devastating effects of polyQ expansions on protein 
structure and neuronal function. While NGS technologies offer unprecedented insight into repeat expansions, 
the functional consequences of these expansions remain challenging to predict experimentally. By integrating 
NGS data with structural biology and machine learning, this study presents a novel approach to predict 
conformational states of huntingtin. Using PDB ID 4FED as a structural reference and implementing ML 
pipelines in Google Colab, we provide a reproducible and scalable method for linking sequence to structure. 
This framework not only addresses a fundamental biological challenge but also opens avenues for clinical 
translation, drug discovery, and precision medicine in Huntington’s disease and related polyQ disorders. 
[18,19,20]

II. Methodology
1. Data Acquisition
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We gathered raw FASTA files containing HTT exon 1 sequences with varying CAG repeat numbers 
from public databases, the NCBI Sequence Read Archive. We added synthetically generated sequences to 
balance pathogenic and non-pathogenic classes. The dataset comprised normal alleles, borderline alleles, and 
pathogenic alleles.

Structural data (PDB ID: 4FED)
Structural data for the huntingtin protein (PDB: 4FED) was retrieved from the Protein Data Bank at the 

RCSB. Although this structure shows a truncated fragment of huntingtin, it still provides a reliable template for 
comparative structural modelling and feature extraction. The resulting parameters included solvent accessibility, 
secondary structure distribution, hydrogen bonding networks, and predicted aggregation hotspots.

2. Preprocessing
Sequence preprocessing and ML-based repeat quantification

For raw NGS sequence reads, we used a Machine learning pipeline with the Colab bio-python 
application for trimming and alignment. Instead of relying solely on rule-based repeat callers, we implemented 
a machine learning framework that integrates alignment-derived features—such as read depth, soft-clipping 
patterns, and local sequence entropy—to predict CAG repeat counts per sample. The model was trained on 
validated outputs from the ML pipeline, enabling robust generalisation across borderline and pathogenic alleles. 
This ML-enhanced quantification pipeline provided accurate, scalable estimates of repeat expansion, which 
were subsequently used for downstream classification.

Structural preprocessing
For structural analysis, the PDB 4FED file was cleaned by removing crystallographic water molecules 

and heteroatoms unrelated to conformational prediction. The structure was minimised using PyMOL to 
eliminate steric clashes. Structural descriptors were extracted with Bio-Python’s PDB module and DSSP 
(Define Secondary Structure of Proteins).
3. Data labelling

Samples were labelled as follows: zero indicates a normal cell line, 1 indicates a pathogenic cell line, 
and values in between indicate a borderline cell line. A binary classification approach was used to develop the 
ML model, with categories on the border examined separately.

Feature Extraction
For each HTT exon 1 sequence, a comprehensive set of features derived from NGS data was extracted 

to capture both genetic and transcriptomic factors influencing pathogenicity. These included CAG repeat length 
(the main factor influencing pathogenicity), GC content in the flanking regions, codon usage bias between CAG 
and CAA codons encoding glutamine, sequence entropy indicating repetitiveness, and predicted RNA 
secondary structures computed using RNAfold. In parallel, structural descriptors were obtained from the 4FED 
crystal structure, including the proportions of α-helix, β-sheet, and coil secondary structures, accessible surface 
area (ASA) per residue, hydrophobicity index based on the Kyte-Doolittle scale, predicted aggregation 
propensity via AGGRESCAN, and backbone dihedral angles (ϕ and ψ) as indicators of conformation. All 
features were combined into a unified matrix, normalised using min–max scaling, and exported as CSV files for 
subsequent machine learning analysis.

4. Machine Learning Pipeline
Model selection: Three ML algorithms were employed.
1. Random Forest Classifier: An ensemble decision tree model that's robust to small datasets.
2. Support Vector Machine (SVM): Efficient for binary classification with high-dimensional features.
3. Deep Neural Network (DNN): Multi-layer perceptron trained on combined sequence and structural features.

Environment setup
All computations were carried out in Google Colab to ensure reproducibility. BioPython was used for 

structural parsing, Scikit-learn for classical machine learning models, and TensorFlow/Keras for deep learning.

Training and testing
We divided our dataset into 80% training and 20% testing subsets using stratified sampling. We 

optimised hyperparameters using a grid search and cross-validation approach. For feature importance, Random 
Forest’s Gini importance scores were assessed.

Model evaluation metrics
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The performance of each classification model was rigorously evaluated using multiple metrics to 
ensure robustness and interpretability. Overall correctness was assessed through accuracy, providing a general 
measure of prediction reliability. To account for potential class imbalance, precision, recall, and F1-score were 
computed, offering insight into the model’s ability to correctly identify each HTT allele category without bias. 
Receiver Operating Characteristic (ROC) curves were generated for each class using a one-vs-rest approach, 
with the area under the curve (AUC) quantifying the trade-off between sensitivity and specificity. Confusion 
matrices were also constructed to visualize true versus false predictions, enabling detailed error analysis across 
Normal, Borderline, and Pathogenic classifications.

5. Implementation (Google Colab)
The ML pipeline was coded in Python within Google Colab for open-source accessibility. The steps 

included:Loading FASTA sequences with BioPython,Counting CAG repeats and computing genomic 
features,Extracting structural descriptors from PDB 4FED,Constructing feature matrix and labels,Training ML 
classifiers (Random Forest, SVM, DNN),Evaluating models using test set metrics,Visualizing feature 
importance and ROC curves.

6. Validation
To validate the model, predictions were compared with known pathogenicity categories from 

databases. Structural predictions were cross-checked against published molecular dynamics simulations of 
polyQ-expanded huntingtin fragments.

7. Ethical and Reproducibility Considerations
This study used only publicly available datasets, with no human subject identifiers. All code, models, 

and processed datasets will be made available in an open GitHub repository to ensure reproducibility and 
community validation.

III. Result

Figure 1: Cleaned data of sample 4FED by using PyMol

Here is a ribbon diagram of a protein structure, shown in vivid colours from blue at the N-terminus to 
red at the C-terminus, highlighting the direction of the polypeptide chain. The structure reveals a well-defined 
tertiary structure made up of multiple alpha helices and beta sheets, suggesting a complex protein with a 
potentially intricate function, possibly involved in specific molecular interactions or enzymatic activity. The 
spatial arrangement and folding patterns suggest potential active sites or binding pockets, which are crucial for 
understanding ligand specificity and therapeutic targeting. Such visualisations, usually derived from X-ray 
crystallography or cryo-EM data, are vital in structural biology, allowing researchers to decipher the molecular 
basis of protein function and design interventions with translational relevance.

The results demonstrate the predictive performance and interpretability of the machine learning model 
across multiple biological features and classification tasks. Through ROC curves, confusion matrices, and 
SHAP analyses, the model’s ability to distinguish pathogenic variants is quantified. At the same time, feature-
level insights reveal the mechanistic relevance of structural and sequence-based disease modelling.
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Figures 3 and 4: Multiclass ROC curves for Random Forest and SVM

Interpretation: In Figure 1, the ROC (Receiver Operating Characteristic) curve evaluates the 
performance of a classifier by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) for 
each class. In this multiclass setting, each class is treated in a one-vs-rest fashion. Class-wise Performance, 
Pathogenic (Green, AUC = 0.80): It shows the best AUC among all three classes. It demonstrates the model's 
strong ability to identify pathogenic cases accurately. Suggests that the model is most confident and reliable 
when predicting pathogenic variants. Borderline (Blue, AUC = 0.73): It exhibits moderate performance, where 
the classifier distinguishes borderline cases with less certainty than pathogenic cases. It may benefit from 
additional features or refined thresholds to improve sensitivity or specificity. Normal (Orange, AUC = 0.66): 
This indicates the lowest AUC, suggesting weaker classification performance. It could reflect class imbalance, 
overlapping feature distributions, or insufficient representation of standard variants. our Random Forest 
classifier shows strong performance in identifying pathogenic variants, with moderate success for borderline 
cases, and limited reliability for normal classifications. The AUC values indicate that, while the model is 
effective overall, further optimisation—especially for the normal class—is needed. This could involve: feature 
engineering (e.g., incorporating structural motifs or NGS-derived metrics), rebalancing training data, or tuning 
hyperparameters to improve class separation.

Figure 2 illustrates the ROC curve, which demonstrates the ability to distinguish between three classes: 
Borderline, Normal, and Pathogenic. The pathogenic (green, AUC = 0.75) model performs well, being 
relatively effective at identifying pathogenic variants. The Normal (orange, AUC = 0.50) model shows a 
random effect, while the Borderline (blue, AUC = 0.45) model performs below this. Only the Pathogenic curve 
rises significantly above this line, indicating that the SVM model is only reliable for pathogenic classification. 
Although the SVM classifier is effective in pinpointing pathogenic variants (AUC = 0.75), it struggles with 
borderline and normal classes, achieving AUCs that are at or below the random baseline. This implies the 
model may be overfitting to pathogenic features or underrepresenting normal and borderline patterns. Overlap 
in the feature space or class imbalance could be hindering separation.

Figure 5: Random Forest confusion matrix graph

Interpretation Here, we compare the actual labels (rows) with the predicted labels (columns) across 
three classes: Borderline, Normal, and Pathogenic.
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Key Observations: Borderline cases were consistently misclassified. All four samples were 
misclassified – mostly as Normal (three) and once as Pathogenic. Normal cases had a moderate accuracy rate: 
two out of four were correctly predicted, but one was misclassified as Borderline and one as Pathogenic. 
Pathogenic cases had the highest correct classification rate, with two out of four being correctly predicted, while 
one was misclassified as Borderline and one as Normal. The Random Forest model shows reasonable 
performance for Pathogenic classification, but struggles significantly with Borderline cases, which were entirely 
misclassified. This suggests that there is feature overlap between the Borderline and Normal/Pathogenic classes, 
potentially indicating class imbalance or insufficient training data for the Borderline class. Need for feature 
refinement, especially for intermediate phenotypes.

Figure 6: Graph of Feature valve by using SHAP coding
Interpretation: This SHAP (Shapley Additive exPlanations) plot visualises the feature-level 

contributions to our model’s output across all samples. Each dot represents a single instance’s SHAP value for a 
given feature, showing both magnitude and direction of impact. SHAP plots show that ASA is the most 
influential feature in the model’s predictions, with higher ASA values (indicated by red dots) consistently 
pushing the output towards pathogenicity. Hydrophobicity also plays a significant role, where lower values 
(blue) tend to reduce the prediction score, suggesting that hydrophilic regions may be associated with non-
pathogenic outcomes. Phi_mean exhibits a moderate yet complex influence, with both high and low values 
contributing variably, suggesting its nuanced structural role. The Aggrescan_score emerges as another key 
driver, where elevated scores increase the likelihood of pathogenic classification, aligning with the biological 
relevance of aggregation-prone regions. Other features such as GC_content, Entropy, RNA_MFE, and 
secondary structure percentages (Coil_pct, Helix_pct, Sheet_pct) contribute less prominently but still provide 
contextual support depending on individual sample characteristics. Overall, the plot emphasises the significance 
of structural and aggregation-related metrics in influencing the model’s decisions, while also highlighting the 
interplay between sequence-derived and biophysical features.

Figure 7: Graph shows dependence of ASA, and Figure 8: Plot shows the SHAP dependence plot for CAG 
repeat
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Figure 9: Graph represents plot for Aggrescan score, and Figure 10: Graph represents GC content by using 
SHAP code

Figure 11: The graph represents a plot for Entropy using SHAP coding
Interpretation: The SHAP dependence plots collectively reveal a consistent pattern of biologically 

meaningful feature contributions to pathogenicity prediction. ASA (Accessible Surface Area), as shown in 
Figure 7, exhibits a strong positive impact, with higher values driving the model towards pathogenic 
classification, indicating the relevance of solvent-exposed regions in structural disruption. Similarly, elevated 
CAG repeats counts, as shown in Figure 8, are associated with increased SHAP values for pathogenic samples, 
aligning with known mechanisms in repeat expansion disorders. The Aggrescan score, as shown in Figure 9, 
emerges as a potent driver, where higher aggregation propensity correlates with stronger pathogenic predictions, 
thereby reinforcing the role of misfolding and aggregation in disease. GC content, as shown in Figure 10, 
contributes moderately, with higher values enhancing pathogenic predictions, possibly due to transcriptional 
instability or regulatory complexity in GC-rich regions. Lastly, Entropy Figure 11 shows a positive correlation 
with pathogenicity, suggesting that sequence variability and disorder may signal a functional compromise. 
Together, these plots validate the model’s interpretability and underscore the translational relevance of 
sequence-structure features in distinguishing pathogenic variants.

IV. Discussion
Combining ROC curves, confusion matrices, and SHAP dependence plots provides a comprehensive 

analysis of the current pathogenicity prediction model's strengths and limitations. While the Random Forest 
classifier shows strong performance for pathogenic variants, it struggles to classify borderline and normal cases, 
highlighting the challenge of modelling intermediate phenotypes. SHAP-based interpretability confirms the 
biological relevance of features such as ASA, Aggrescan_score, CAG_repeat, GC_content, and Entropy, each 
providing distinct mechanistic insights into disease classification. These findings validate the model’s 
translational potential and support its integration into genotype-phenotype correlation pipelines. Looking ahead, 
future work should focus on improving class separation through ensemble learning, feature augmentation, and 
domain-specific regularization. Adding additional structural descriptors, evolutionary conservation metrics, and 
transcriptomic signals could increase sensitivity for borderline cases. Expanding the dataset to include diverse 
pathogenic contexts and validating the model across independent cohorts will enhance generalizability. 
Integrating with clinical metadata and therapeutic annotations may further align the model with SDG 3 goals, 
enabling precision diagnostics and treatment prioritization. Ultimately, this framework lays the groundwork for 
a modular, interpretable, and biologically grounded tool for pathogenicity prediction in translational research.
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V. Conclusion
Combining ROC curves, confusion matrices, and SHAP dependence plots provides a comprehensive 

understanding of the model’s performance and interpretability in classifying pathogenicity across Borderline, 
Normal, and Pathogenic classes. The Random Forest ROC curves demonstrate strong discriminative power for 
Pathogenic variants (AUC = 0.80), moderate performance for Borderline Variants (AUC = 0.73), and weaker 
classification for Normal Variants (AUC = 0.66). In contrast, the SVM model exhibits limited reliability, with 
only the Pathogenic class achieving a meaningful AUC (0.75), while the Borderline and Normal classes hover 
near random performance. The confusion matrix further reveals that Borderline cases are consistently 
misclassified, highlighting the need for feature refinement or ensemble strategies to improve class separation. 
SHAP-based interpretability adds mechanistic depth to these performance metrics. ASA (Accessible Surface 
Area) emerges as a dominant feature, with higher values strongly driving pathogenic predictions, reflecting the 
biological relevance of solvent-exposed regions. CAG_repeat shows a similar trend, where longer repeat 
lengths correlate with increased pathogenicity, consistent with known expansion disorders. Aggrescan_score is 
another key driver, with elevated aggregation propensity contributing positively to disease classification. GC 
content and Entropy offer a moderate but class-specific influence—higher GC content and sequence variability 
tend to push predictions towards pathogenicity, suggesting that transcriptional instability and disorder are 
contributing factors. Collectively, these plots validate the model’s biological plausibility and highlight the 
importance of integrating sequence-derived and structural features for robust pathogenicity prediction. The 
interpretability offered by SHAP not only confirms the model’s internal logic but also supports translational 
framing by linking molecular traits to disease mechanisms. These insights can guide future refinement of 
feature sets, model architecture, and therapeutic hypothesis generation, reinforcing the model’s utility in 
precision medicine and SDG 3–aligned global health strategies.
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