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Abstract:  
An eigenmode projection technique is utilized to solve the problems ofthe electromagnetic wave propagation in 

shielded transmission lines. The technique isadopted to solve theproblems ofinfinite length rectangular shaped 

loaded lineswhere a fictitious canonical cavity surrounded by perfect electric surfaceis chosen to enclose the 

line and the fields inside are expanded in terms ofthe cavitysolenoidal and irrotational eigenmodes where they 

are considered as a complete set torepresent any vector field inside the cavity. The fields in Maxwell’s equations 

inside theenclosed region are then expanded using the cavity eigenmodes. Finally, a set of equationsfor the 

eigenmodes are resulted by using thefields expansions in Maxwell’s equations ofthe cavity where mode 

projections are done. This set of equations aresolved together toget the line dispersion curve and the 

propagating modes. 
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I. Introduction 
 One of the early milestones in microwave engineering was the development of waveguide andother 

transmission lines for the low-loss transmission of power at high frequencies.Early RF and microwave systems 

relied on waveguides, two-wire lines, and coaxial linesfor transmission where the properties of these lineswere 

studied extensively
1,2

 and exact mathematical derivations for the different propagating modes of fields, cut off 

frequencies, propagation constants, attenuation constants, and characteristic impedancewere introduced
3,4

.Planar 

transmission lines in the form of stripline, microstrip lines, coplanar waveguides,and several other types of 

related geometries were then invented
5
. They have manyadvantages where they are lightweight, compact, cost 

effective, and capable of being easilyintegrated with active circuit devices to form microwave integrated 

circuits. However, dueto the geometries for these lines, their behaviors and analysis are very 

complicated
6
.Shielded transmission linesin the form of shielded microstrip lines andshielded coplanar 

waveguides can be considered good models for their open equivalent lines provided that the dimensionsof the 

shield (closing walls) are adjusted to be equal to or greater than about 10 to 20 times the center conductorwidth
4
. 

 For the analysis of the shielded structures, themodal expansion concept was widely used
7,8

. Also, it was 

integrated with someconventional numerical methods such as the finite-difference time-domain method 

(FDTD)
9
, the finite element method (FEM)

10
, and the integral equations using moment method(MoM)

11
 aiming 

to produce new hybrid methods. Recently, an eigenmode projection technique (EPT) was introduced and used 

tosolve severalelectromagnetic problems: resonance
12

,waveguide discontinuities
13

, scattering
14

, transient 

analysis of waveguide probe excitation
15

 and electrostatic
16

problems. The focusof this paper is on the solution of 

the problems of shielded transmission lines using EPT.In Section II, the formulation of the eigenmode 

expansion method is presented. Section III covers theeigenmode solution of the infinite length 

rectangularshaped loaded transmission lines. 

 

II. The Eigenmode Expansion Method 
Throughout this section, the eigenmode expansion method is presented starting withexpanding the 

electric and magnetic fields as a series of different eigenmodes then expanding the derivatives of these fields by 

following arigorous mathematical framework to reach the Maxwell’s equations for these fields as a series of 

eigenmodes.Finally,the complex differential equations of electric and magnetic fields are shown as a system 

oflinear equations, where the unknowns are the coefficients of the eigenmodes. 
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Eigenmode Expansion 

According to Slater
17

and later the modification made by Kurokawa
18

, the eigenmodeexpansion 

provides a representation for the electric and magnetic fields in anarbitrary-shaped cavity of volume Vtenclosed 

by a surface Stwhich is assumed to bepartly perfect electric conducting SEand partly perfect magnetic conducting 

SMas shownin Figure 1, in terms of the cavity solenoidal and irrotational eigenmodes as 

 𝐄 𝐫 =  𝑎𝑛𝑬𝒏 𝒓 

𝑛

+  𝑓α
α

𝑭𝜶 𝒓 , (1) 

 

 𝐇 𝐫 =  𝑏𝑛𝑯𝒏 𝒓 

𝑛

+  𝑔𝝀

𝝀

𝑮𝝀 𝒓 . (2) 

 

Where an, bn, fα and gλ represent the coefficients of the cavity fields. En(r) and Hn(r) are the solenoidal 

electric and magnetic eigenmodes, respectively. Fα(r) and Gλ(r) are the irrotational electric and magnetic 

eigenmodes, respectively. The solenoidal eigenmodes are coupled through the curl equations 

 ∇ × 𝑬𝑛 𝒓 = 𝑘𝑛𝑯𝑛 𝑟 , ∇ × 𝑯𝑛 𝒓 = 𝑘𝑛𝑬𝑛 𝒓 . (3) 

and satisfy the homogeneous Helmholtz equation. 

 (∇2 + 𝑘𝑛
2) 𝑬𝑛 𝒓 = 0, (∇2 + 𝑘𝑛

2) 𝑯𝑛 𝒓 = 0. (4) 

The irrotational eigenmodes are represented by the scalar potentials (Φα, Ψλ)gradient through 

 𝑙𝛼 𝑭𝜶 𝒓 = ∇Φ𝛼 , 𝑤𝜆 𝑮𝝀 𝒓 = ∇Ψ𝜆 . (5) 

and those scalar potentials satisfy Helmholtzequation. 

 (∇2 + 𝑙𝛼
2 ) Φ𝛼 = 0, (∇2 + 𝑤𝜆

2) Ψ𝜆 = 0. (6) 

where kn, lα,wλare the wavenumbers for thesolenoidal and irrotational electric and magnetic fields, respectively.  

The cavity eigenmodes discussed above form a complete orthonormalset. Also, the projectionsbetween 

solenoidal and irrotational modes vanish
19

. 

 

Figure1: An arbitrary-shaped cavity of volume Vtenclosed by a surface St, and its orthogonaleigen functions. 

 

Field Derivatives Expansion 

The expansions cannot be employed to determine the curl and the divergence termsdirectly. The curl 

operator over the electric and magnetic fields can be represented as
18,19,20

 

 ∇ × 𝑬 =   𝑘𝑛𝑎𝑛 +  𝑬, 𝑯𝑛  𝑆𝑡 𝑯𝑛

𝑛

+    𝑬, 𝑮λ 𝑆𝑡 𝑮𝜆

λ

 (7) 

 ∇ × 𝑯 =   𝑘𝑛𝑏𝑛 +  𝑯, 𝑬𝑛  𝑆𝑡 𝑬𝑛

𝑛

+    𝑯, 𝑭𝛼  𝑆𝑡 𝑭𝛼

𝛼

 (8) 

Where 𝑿, 𝒀 𝑆𝑡 =  𝑿 × 𝒀∗. 𝒏 
𝑆𝑡

𝑑𝑠. 

 

Maxwell’s Equations Expansion 

By Substituting the expansions (2) and (7) into the Maxwell’sequation∇ × 𝑬 =  −𝑗𝜔µ 𝑯and 

performing eigenmodeprojection with Hnand Gλand substituting the expansions (1) and (8) into the 

Maxwell’sequation∇ × 𝑯 =  𝑗𝜔𝜖𝑬 + 𝑱and performing eigenmodeprojection with Enand Fα using the fact that 

the modesare orthonormal, yields
18,20 

 𝑘𝑛𝑎𝑛 +  𝑬, 𝑯𝑛  𝑆𝑡 = −𝑗ωμ𝑜   𝑏𝑛 ′

𝑛 ′

 μ𝑟𝑯𝑛 ′ , 𝑯𝑛  +  𝑔𝜆 ′

𝜆 ′

 μ𝑟𝑮𝜆 ′ , 𝑯𝑛    (9) 

  𝑬, 𝑮𝜆 𝑆𝑡 = −𝑗𝜔𝜇𝑜   𝑏𝑛 ′

𝑛 ′

 𝜇𝑟𝑯𝑛 ′ , 𝑮𝜆 +  𝑔𝜆 ′

𝜆 ′

 𝜇𝑟𝑮𝜆 ′ , 𝑮𝜆   (10) 
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 𝑘𝑛𝑏𝑛 +  𝑯, 𝑬𝑛  𝑆𝑡 = 𝑗𝜔𝜖𝑜   𝑎𝑛 ′

𝑛 ′

 𝜖𝑟𝑬𝑛 ′ , 𝑬𝑛  +  𝑓𝛼 ′

𝛼 ′

 𝜖𝑟𝑭𝛼 ′ , 𝑬𝑛   +  𝑱, 𝑬𝑛   (11) 

  𝑯, 𝑭𝛼  𝑆𝑡 = 𝑗𝜔𝜖𝑜   𝑎𝑛 ′

𝑛 ′

 𝜖𝑟𝑬𝑛 ′ , 𝑭𝛼  +  𝑓𝛼 ′

𝛼 ′

 𝜖𝑟𝑭𝛼 ′ , 𝑭𝛼   +  𝑱, 𝑭𝛼   (12) 

Where 𝑿, 𝒀 =  𝑿. 𝒀∗
𝑉𝑡

𝑑𝑣. this term  𝑿, 𝒀 denote the volumetric projection of thetwo vector 

functions Xand Y.By putting equations (9)-(12) in matrix form, we obtain 

 𝑲𝒂 + 𝑸𝑬𝑯 = −𝑗ωμ𝑜  (𝑴𝑯𝑯𝒃 + 𝑴𝑮𝑯𝒈) (13) 

 𝑸𝑬𝑮 = −𝑗𝜔𝜇𝑜  (𝑴𝑯𝑮𝒃 + 𝑴𝑮𝑮𝒈) (14) 

 𝑲𝒃 + 𝑸𝑯𝑬 = 𝑗𝜔𝜖𝑜 𝑾
𝑬𝑬𝒂 + 𝑾𝑭𝑬𝒇 + 𝑽𝑱𝑬 (15) 

 𝑸𝑯𝑭 = 𝑗𝜔𝜖𝑜 𝑾
𝑬𝑭𝒂 + 𝑾𝑭𝑭𝒇 + 𝑽𝑱𝑭 (16) 

where 𝑲is a diagonal matrix with diagonal elements kn, 𝑴𝑛𝑛 ′
𝑿𝒀 =  𝜇𝑟𝑿𝑛 ′ , 𝒀𝑛  , 

𝑾𝑛𝑛 ′
𝑿𝒀 =  𝜖𝑟𝑿𝑛 ′ , 𝒀𝑛 ,𝑸𝑛

𝑿𝒀 =  𝑿, 𝒀𝑛 𝑆𝑡 , and 𝑽𝑛
𝑿𝒀 =  𝑿, 𝒀𝑛  . X and Y can be E, H, F, G, or J.The above system of 

equations (13)-(16) represents the EPT core, where these equations are employed to solve the eigenmode 

problems for rectangularshaped electromagnetic problems in the next two sections. 

 

III. Propagation Solution for Shielded Transmission Lines 
It’s required to evaluate the dispersion relation (the resonance frequencies) and themodes of a 

closed(shielded) rectangular transmission line loaded with dielectric, andlossy metal. The solution of the source-

free wave propagation in a closed-boundary loadedstructure is similar to the cavity resonance problem
12,13,14,15,16

. 

Generally, EPT is used to study the resonance of arbitrary-shaped conducting cavitywith arbitrary dielectric 

loading as shownin Figure2a. The solution flow is as follows: asdepicted in Figure2b, a canonical cavity 

surrounded by either perfect electric (PE) or perfect magnetic (PM) orcomposite PE/PM surface is chosen, the 

canonical cavity solenoidaland irrotational eigenmodes are then derived analytically where they are considered 

as acomplete set to represent any vector field inside the cavity. The main problem is enclosedwithin this cavity 

as shown in Figure2c. The fields inside the enclosed region are expandedin terms of the derived cavity 

eigenmodes. The eigenvalue problem is finally formed byusing these expansions in Maxwell’s equations of the 

cavity where mode projections aredone. It’s worth mentioning that all PEC materials found in the problem are 

replacedwith highly conductive material, although practical conductors’ loss tangent is frequencydependent, it is 

assumed that the used conductor has a constant loss tangent with highvalue over the frequency range of interest, 

which would be almost identicalwith thetheoretical PEC material at microwave frequencies.It is expected that 

the eigenvalues(resonance frequencies) in this case will be complex, and thespurious modes will be 

distinguished upon comparing the realand imaginary parts of the eigenvalue of the resulted modes. 

Starting from the system of equations (13)-(16), All the surface integrals (integrals thatrepresent the 

coupling between the outer modes and the canonical cavity eigenmodes)vanish due to the fact of having 

zeroexternal fields (this is a closed problem and there isno outer modes).Also, dealing with a source-free 

medium withconstant permeability and making useof the case that the cavity eigenmodes form a complete 

orthonormalset.The system of equations(13)-(16) can be reduced to 

 𝑲𝒂 = −𝑗𝜔𝜇𝑜𝒃 (17) 

 0 = −𝑗𝜔𝜇𝑜𝒈 (18) 

 𝑲𝒃 = 𝑗𝜔𝜖𝑜 𝑾
𝑬𝑬𝒂 + 𝑾𝑭𝑬𝒇  (19) 

 0 = 𝑗𝜔𝜖𝑜 𝑾
𝑬𝑭𝒂 + 𝑾𝑭𝑭𝒇  (20) 

Solving equations (17)-(20) for the coefficients of the solenoidal electric field eigenmodes. 

 𝒃 = −
𝑲𝒂

𝑗𝜔𝜇𝑜

 (21) 
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(c) enclosing the actual cavity with fictitiouscanonical cavity. 

 

Figure2: Model development for the resonance problem using the eigenmode projectiontechnique. 

 

 𝒇 = − 𝑾𝑭𝑭 −𝟏𝑾𝑬𝑭𝒂 (22) 

  𝑾𝑬𝑬 − 𝑾𝑭𝑬 𝑾𝑭𝑭 −𝟏𝑾𝑬𝑭 −𝟏𝑲𝟐𝒂 − 𝜔2𝜇𝑜𝜖𝑜𝒂 = 0 (23) 

Equation (23) can be represented as 

  𝛀 − 𝑘𝟐𝑰 𝒂 = 0 (24) 

Where 𝑘2 = 𝜔2𝜇𝑜𝜖𝑜and I is the identity matrix. So, the dispersion relation can beobtained by 

computing the matrix eigenvalues where they are used in determining thecorresponding wavenumbers. The 

modal field distribution can be determined by obtainingthe eigenvectors a. The other solenoidal and irrotational 

modes can be determinedusingequations (21),(22). 

 

Results 
First of all, the previous approach is verified for 2 special cases, the canonical caseof a PEC rectangular 

cavity partiallyfilled with dielectric, and the canonical case of a PEC rectangular cavity partiallyfilled withlossy 

metal. The results of the presented casesare based on the numbering scheme and the modes numbers required 

for convergence
21

 wherefor any 1D problem, the maximum index used forvariations in v direction (𝑁𝑣
max ) can 

be represented as 

 𝑁𝑣
max =

1

20𝜎𝜖
2

𝑝

Δ𝑣

 (25) 

Where p is the dimension of an object along the v direction, ∆vis the smallest dimensionof an object in 

the unit cell along the v direction, 𝜎𝜖
2 is a truncation parameter (to enhanceaccuracy decrease 𝜎𝜖

2), and the used 

number of modes is 𝑁𝑣
max .In general, the numbering scheme of modes used on the following cases is 

determinedby considering all the combinations of different indices representing the mode variationsin x and y 

directions and convergence is achieved by increasing the maximum index usedin each direction. 

The first case to be considered is a rectangular waveguide partially filled withdielectric material 

asshown in Figure 3. The waveguide has cross-sectional dimensions a= 22.86 mm, b = 10.16 mm, and the 

(a) arbitrary-shaped conducting cavity with 

arbitrarydielectric loading. 
(b) canonical cavity with known eigenmodes. 
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dielectric has d = 5.82 mm and εr= 10.The dispersion curve obtained usingthe EPT with the modes numbering 

scheme shown in Table 1 in comparison with theexact solution for the propagating modes is illustrated in Figure 

4. In addition, Figure 5provides the electric field distribution using the EPT in comparison with the exact one 

forx = a/4 along the y-direction. It’s to be noted that both figures show excellent agreementwith the analytical 

results for this case
4
.  

 

 

Figure3: Rectangular waveguide partially filled with dielectric material. 

Figure4: Dispersion curve of a partially filled waveguide with a = 22.86 mm, b = 10.16 mm, d = 

5.82 mm and εr= 10.  

 

The second case to be considered is a rectangular waveguide partially filled with PEC asshown in 

Figure 6. The waveguide has cross-sectional dimensions a = 22.86 mm, b = 10.16mm, and the PEC has 

thickness d = 3.38mm. For this simple case, the results obtainedshould be the same as that of an empty 

waveguide with cross-sectional dimensions a×(b-d).By using the EPT with the modes numbering scheme shown 

in Table 2, The  

eigenvalues are complex where they can be separated into two sets: the first set contains themodes resonating in 

the 
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conductor and the other one contains the modes resonating insidethe cavity. The separation of the modes is done 

bycomparing the real and the imaginaryparts of the complex cut off wave number. Figure 7 shows the relation 

between the realpart and the imaginary part of the normalized cut off frequency for different loss tangent. 

The actual modes are the modes with high real part compared to the imaginary part fortanδ with large value 

(tanδ > 10
3
)

16
.The dispersion curve obtained using the EPT in comparison with the exact solutionfor the 

propagating modes is illustrated in Figure 8. In addition, Figure 9 provides theelectric field distribution using the 

EPT in comparison with the exact one. Both figuresshow excellent agreement with the exact results. 

 

 

Figure6: Rectangular waveguide partially filled with PEC. 

 

Second, shielded microstrip transmission line is a member of the family of the planar microwave 

transmission lines where it is similar to the basic microsrip line except for theenclosure and the side walls. The 

metallic enclosure will cover the entire structure asshown in Figure 10. The case to be considered is of a line 

which has cross-sectionaldimensions A = 12.7 mm and B = 12.7 mm, The patch has cross-sectional dimensions 

a =1.27 mm and t = 0.127 mm, The two side walls both have cross-sectional dimensions 2a =2.54 mm and a+t = 

1.397 mm and the substrate has cross-sectional dimensions 6a = 7.62mm, a = 1.27 mm and εr = 2.56.Figure 11 

compares the  

Figure5: Electric field distribution for the dominant 

mode along the y-direction at x = a/4 for a partially 

filled waveguide with a = 22.86 mm, b = 10.16 mm, d = 

5.82 mm and εr= 10.  

 nx ny 

Solenoidal TE 0,1 j 

Solenoidal TM 1 j 

Irrotational 1 j 

Limits 0 ≤ j ≤ 25 

Table 1:Numbering scheme of the modes used to 

generate results in Figure 4 and Figure 5. 
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dispersion relation obtained using EPT with the numberingscheme of modes as shown in Table 3 and those 

obtained using the commercial solverHFSS. It is clear that excellent agreement is achieved for the different 

propagating modes. 

Third, shielded coplananr waveguide problem is illustrated in Figure 12. The case to be considered is of 

a line which has cross-sectional dimensions A = 12.7 mmand B = 12.7 mm, The patch has cross-sectional 

dimensions a = 1.27 mm and t = 0.127mm, The two side walls both have cross-sectional dimensions 4a = 5.08 

mm and a+t =1.397 mm and the substrate has cross-sectional dimensions 2a = 2.54 mm, a = 1.27 mmand εr= 

2.56.Figure 13 compares the dispersion relation obtained using EPT with the numberingscheme of modes as 

shown in Table 4 andthose obtained using the commercial solverHFSS. It is clear that excellent agreement is 

achieved for the different propagating modes. 

 

Figure7: Normalized complex cut off wave number 

for rectangular waveguide partially filled 

with PEC. 

 

Figure8: Dispersion curve of a partially 

filledwaveguide with a = 22.86 mm, b = 10.16 mm and 

d = 3.38 mm.  

Figure9: Electric field distribution for the dominant 

mode for a partially filled waveguide with a= 22.86 

mm, b = 10.16 mm, and d = 3.38 mm. 

 nx ny 

Solenoidal TE 0,1 j 

Solenoidal TM 1 j 

Irrotational 1 j 

Limits 0 ≤ j ≤ 20 

Table 2:Numbering scheme of the modes used to 

generate results in Figures 7, 8 and 9. 
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Figure10: Shielded microstrip transmission line. 

 

 

Figure12: Shielded coplananr waveguide. 

 

Figure11: Dispersion curve of shielded microstrip 

transmission line. 

 nx ny 

Solenoidal TE i j 

Solenoidal TM i j 

Irrotational i j 

Limits 
0 ≤ i ≤ 25 

0 ≤ i ≤ 35 

Table 3:Numbering scheme of the modes used to 

generate results in Figure 11. 
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IV. Conclusion 

Throughout this work, an eigenmode projection technique was utilized to solve theproblems of the 

electromagnetic wave propagation in shielded transmission lines. The technique is adopted to solve the 

problems of infinite length rectangular shaped loaded lines.The EPT was shown to have many advantages 

compared to other conventional numerical techniques where it provides an automatic selection for the basis 

functions using complete orthogonalfunctions.It doesn’t require an explicit subwavelength segmentation for the 

structure prior to the solution flow.The involved integrals have no singularity issues, and their kernels are 

typically sinusoidal for rectangular canonical structures.The integrals are also frequency independent, which 

means that all integrals will becalculated only one time through the solution flow to obtain the dispersion 

curve.Integrals are linear with permittivity, which allows for scaling of the integrals in caseof the presence of the 

variable dielectric constants. 
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 nx ny 

Solenoidal TE i j 

Solenoidal TM i j 

Irrotational i j 

Limits 
0 ≤ i ≤ 30 

0 ≤ i ≤ 35 

Table 4:Numbering scheme of the modes used to 

generate results in Figure 13. 
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