
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) 

Volume 2, Issue 4 (May. – Jun. 2013), PP 07-13 
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197  

www.iosrjournals.org  

www.iosrjournals.org                                                             7 | Page 

 

Binary Step Size Variations of LMS and NLMS 
 

C Mohan Rao
1
, Dr. B Stephen Charles

2
, Dr. M N Giri Prasad

3
 

1Asso. Prof., Department of ECE, NBKRIST, Vidhyanagar, India 
2Principal, SSCET, Kurnool, India 

3Prof. & Head, Department of ECE, JNTUACE, Pulivendula, India 
 

 Abstract: Due to its ease of implementation, the least mean square (LMS) algorithm is one of the most well-

known algorithms for mobile communication systems. However, the main limitation of this approach is its 

relatively slow convergence rate. In this paper two new variable step size Least Mean Square (LMS) adaptive 

filter algorithms are proposed. In the first algorithm two step sizes will be calculated from two values which will 

vary iteration to iteration. This algorithm is analogous to LMS algorithm, and produces better convergence 

performance compared to that of LMS. In the second algorithm also two step sizes are calculated based on a 

variable. This algorithm is analogous to Normalised Least Mean Square (NLMS) and produces better 

convergence performance compared to that of NLMS. 

Keywords –LMS, NLMS, Binary Step, Channel Equalization. 

 
I. INTRODUCTION 

Consider the communication system depicted in the figure 1. The communication channel is 
continuous, but due to matched filtering, the effective signaling from the Transmitter pulse shaping to Receiver 

matched filter is discrete. Then, we can model the system as a discrete one.  
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If hl≠0, l≠0, the channel causes ISI. A symbol x[n] interferes next L-1 symbols. Matched-filter alone cannot 

overcome this degradation. An equalizer is needed. 

 
Figure  1. Communication System 

An equalizer can be classified in several different ways as it was shown in figure 2. 

 
Figure 2. Types of Equalizers 
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1.1. Related Work 

In the field of adaptive signal processing, the least mean square (LMS) algorithm is an extensively 

explored algorithm due to its simplicity [1-3]. The LMS algorithm has been widely used in mobile 
communications [4–6, 7, 8] such as multi-user detection, adaptive antenna arrays, and equalizations, to name 

just a few. The main limitation of the algorithm is its convergence rate [6, 10]. That is, the LMS algorithm has 

the conflicting requirements of a small step-size parameter to reduce mis-adjustment and a large step-size 

parameter to achieve fast convergence. There are two main categories for methods addressing the convergence 

rate issue: time-domain and transform-domain methods.  

In the time-domain category, researchers constantly look for new methods of step size selection to 

improve convergence rate. The most common scheme is the gear shifting approach [9], which uses a large step 

size during the transient state and then shifts to a smaller size during the steady state. Other important time-

domain approaches include variable step-size LMS algorithms, which make the step size data-dependent. 

However, when the input signal is highly colored, LMS algorithms tend to produce a slow convergence rate. 

Previous methods alleviate the correlation of the input signal by pre-whitening it using a number of transforms, 
of which the frequency domain versions are more common. Frequency-domain LMS algorithms can increase the 

convergence speed for broadband signals. 

In the current paper two variable step size LMS algorithms are proposed, in which one algorithm 

named Binary Step Size LMS outperforms LMS and other named Binary Step Size NLMS outperforms NLMS. 

The rest of the paper was organized as follows. In the next two sections LMS and NLMS algorithms are 

explained. In the section 4, the binary step size algorithms are presented. The simulation results are given in the 

section 5 and the section 6 concludes this paper. 
 

II. LEAST MEAN SQUARES FILTER (LMS) 
Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by 

finding the filter coefficients that relate to producing the least mean squares of the error signal (difference 

between the desired and the actual signal). It is a stochastic gradient descent method in that the filter is only 

adapted based on the error at the current time. It was invented in 1960 by Stanford University professor Bernard 

Widrow and his first Ph.D. student, Ted Hoff [11]. 

  

 
Figure 3. LMS Adaptive Filtering 

 

2.1 Relationship to the least mean squares filter 

The realization of the causal Wiener filter looks a lot like the solution to the least squares estimate, 

except in the signal processing domain. The least squares solution, for input matrix  and output vector  is 

yXXX TT 1)(ˆ  . 

The FIR Wiener filter is related to the least mean squares filter, but minimizing its error criterion does 

not rely on cross-correlations or auto-correlations. Its solution converges to the Wiener filter solution. Most 

linear adaptive filtering problems can be formulated using the block diagram above. That is, an unknown 

system )(nh  is to be identified and the adaptive filter attempts to adapt the filter )(ˆ nh to make it as close as 

possible to )(nh , while using only observable signals )(nx , )(nd   and )(ne ; but )(ny , )(nv and )(nh  are 

not directly observable. Its solution is closely related to the Wiener filter. 

The basic idea behind LMS filter is to approach the optimum filter weights ),( 1PR
 by updating the 

filter weights in a manner to converge to the optimum filter weight. The algorithm starts by assuming a small 

weights (zero in most cases), and at each step, by finding the gradient of the mean square error, the weights are 
updated. That is, if the MSE-gradient is positive, it implies, the error would keep increasing positively, if the 
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same weight is used for further iterations, which means we need to reduce the weights. In the same way, if the 

gradient is negative, we need to increase the weights. So, the basic weight update equation is : 

],[1 nWW nn  where  represents the mean-square error. The negative sign indicates that, we need to 

change the weights in a direction opposite to that of the gradient slope. 
The mean-square error, as a function of filter weights is a quadratic function which means it has only 

one extreme that minimizes the mean-square error, which is the optimal weight. The LMS thus, approaches 

towards these optimal weights by ascending/descending down the mean-square-error vs filter weight curve. 

The LMS algorithm for
thp  order algorithm can be summarized as 

 

Parameters:  p is the filter order,  

 is the step size 

Initialization:  0)0(ˆ h  

Computation:  For n = 0, 1, 2,…. 
Tpnxnxnxnx )]1(),...,1(),([)(   

)()(ˆ)()( nxnhndne H  

)()()(ˆ)1(ˆ * nxnenhnh 
 

 

2.2. Convergence and stability in the mean 

As the LMS algorithm does not use the exact values of the expectations, the weights would never reach 

the optimal weights in the absolute sense, but a convergence is possible in mean. That is even-though, the 

weights may change by small amounts, it changes about the optimal weights. However, if the variance with 

which the weights change, is large, convergence in mean would be misleading. This problem may occur, if the 

value of step-size   is not chosen properly. 

If   is chosen to be large, the amount with which the weights change depends heavily on the gradient 

estimate, and so the weights may change by a large value so that gradient which was negative at the first instant 

may now become positive. And at the second instant, the weight may change in the opposite direction by a large 

amount because of the negative gradient and would thus keep oscillating with a large variance about the optimal 

weights. On the other hand if   is chosen to be too small, time to converge to the optimal weights will be too 

large. Thus, an upper bound on  is needed which is given as
max

20


    

where max is the greatest eigenvalue of the autocorrelation matrix )}.()({ nxnxER   If this condition is not 

fulfilled, the algorithm becomes unstable and )(ˆ nh diverges. 

Maximum convergence speed is achieved when ,
2

minmax 



 where min  is the smallest 

eigenvalue of R. Given that  is less than or equal to this optimum, the convergence speed is determined 

by min , with a larger value yielding faster convergence. This means that faster convergence can be achieved 

when max is close to min , that is, the maximum achievable convergence speed depends on the eigenvalue 

spread of R. A white noise signal has autocorrelation matrix IR 2 where 
2  is the variance of the signal. 

In this case all eigenvalues are equal, and the eigenvalue spread is the minimum over all possible matrices. The 
common interpretation of this result is therefore that the LMS converges quickly for white input signals, and 

slowly for colored input signals, such as processes with low-pass or high-pass characteristics. 

It is important to note that the above upper-bound on  only enforces stability in the mean, but the coefficients 

of )(ˆ nh  can still grow infinitely large, i.e. divergence of the coefficients is still possible. A more practical 

bound is ,
][

20
Rtr

  where tr[R] denotes the trace of R. This bound guarantees that the coefficients 

of )(ˆ nh do not diverge (in practice, the value of   should not be chosen close to this upper bound, since it is 

somewhat optimistic due to approximations and assumptions made in the derivation of the bound). 
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III. NORMALIZED LEAST MEAN SQUARES FILTER (NLMS) 

The main drawback of the "pure" LMS algorithm is that it is sensitive to the scaling of its input ).(nx  

This makes it very hard (if not impossible) to choose a learning rate  that guarantees stability of the algorithm. 

The Normalized least mean squares filter (NLMS) is a variant of the LMS algorithm that solves this problem by 

normalizing with the power of the input. The NLMS algorithm can be summarized as: 

Parameters: p  filter order 

 
  step size 

Initialization: 0)0(ˆ h  

Computation: For n = 0, 1, 2, …   

 
Tpnxnxnxnx )]1(),....,1(),([)(   
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3.1. Optimal learning rate 

It can be shown that if there is no interference ),0)(( nv then the optimal learning rate for the 

NLMS algorithm is 1opt
 

and is independent of the input x(n) and the real (unknown) impulse 

response h(n). In the general case with interference )0)(( nv  the optimal learning rate is 

]|)([|

]|)(ˆ)([|
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The results above assume that the signals )(nv and x(n) are uncorrelated to each other, which is 

generally the case in practice. 

 
 

IV. BINARY STEP SIZE ALGORITHMS 
 

4.1. Binary Step Size LMS (BSSLMS) 

Here, we have two step sizes calculated from 2 values, delta and deviation. When the error increases 

from the previous value of error step size is delta+deviation. And when the error decreases from its previous 

value step size is delta-deviation. It has been found that this converges nearly as fast as NLMS algorithm. 
 

 

4.2. Binary Step Size NLMS (BSSNLMS) 

Here, we have two step sizes calculated from a single value delta. When the error increases from the 

previous value of error step size is delta+0.01. And when the error decreases from its previous value step size is 

delta-0.01. It has been found that this converges nearly as fast as NLMS algorithm, plus an added advantage that 

the mean square error decreases as compared to NLMS. 

  

V. SIMULATION RESULTS 
The performance of proposed as well as LMS and NLMS are presented in this section. In general the 

mean square error has to reach zero as soon as possible. But in practice, because of random nature of various 

phenomena makes it difficult for the automated systems to serve the purpose. The basic algorithm in the 

adaptive filtering, the LMS, initializes the process of predicting the unknown system or channel. But because of 

same step size the LMS takes considerable amount of time as well as complexity, modification of LMS in 

different ways are proposed in the literature. The performance of LMS algorithm is shown in the part a figures 

5, 6 and 7. In fig. 5, the Mean Square Error (MSE) is plotted with respect to number of iterations with inherently 

represents the time to converge. As can be observed, in the case of LMS, the maximum value of MSE is around 
0.45. The MSE is under 0.05 after 50 iterations. But even after 500 iterations also the error is not less than 0.01. 

In the Normalized LMS algorithm on the other hand the MSE has a maximum value around 0.85.  

The MSE is greater than 0.05 even till 100 iterations. From that point onwards the MSE is less than 

even 0.01. In the case BSSLMS, the maximum value of MSE is around 0.45. The MSE is less than 0.05 by 25 

iterations itself. From 50 iterations onwards the MSE is less than 0.01. In the case BSSLMS, the maximum 

value of MSE is around 0.38. The MSE is greater than 0.1 even till 50 iterations. From 100 iterations onwards 
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the MSE is less than 0.005.  

 

    
                                 a) LMS                      b) NLMS 

   
                                 c) BSSLMS                      d) BSSNLMS 

Figure 4. Performace of Different Algorithms (MSE Vs No. Iterations(0-500) 

 

   
a) LMS                      b) NLMS 
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c) BSSLMS                      d) BSSNLMS 

Figure 5. Performace of Different Algorithms (MSE Vs No. Iterations(0-250) 

 

    
a) LMS                      b) NLMS 

   
c) BSSLMS                      d) BSSNLMS 

Figure 6. Performace of Different Algorithms (MSE Vs No. Iterations(250-500) 

 
 

VI. CONCLUSIONS 
The proposed two algorithms are producing comparatively good results when compared with LMS and 

NLMS. The BSSLMS has excellent delay in the MSE in the first 25 iterations by that the average MSE, if we 

consider, would be very less compared to all the algorithms of our interest. The BSSNLMS on the other hand, 

has high MSE in the initial iterations but after 100 iterations the MSE almost 0.005 and it is still reducing in the 

further iterations.  By that we can conclude that the proposed algorithms outperform the well-known LMS and 

NLMS. The obtained are comparable to those of [11]-[13].   
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