
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 4, Issue 1, Ver. II (Jan. 2014), PP 69-74

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

www.iosrjournals.org 69 | Page

Optimization of Adaptive Fir Filter for High Throughput, Low

Power & Area Using Distributed Arithmetic

Kalaiarashi.K
1
,
1
 Mr.Santhakumar.K

2
,

1
Pg Scholar, Department Of Ece, Nandha Engineering College, Erode.

 2
Associate Professor, Department Of Ece, Nandha Engineering College, Erode.

Abstract: This brief presents a novel pipelined architecture for low-power, high-throughput, and low-area

implementation of adaptive filter based on distributed arithmetic (DA). The throughput rate of the proposed

design is significantly increased by parallel lookup table (LUT) update and concurrent implementation of

filtering and weight-update operations. The DA-based inner-product computation by conditional signed carry-

save accumulation is replaced with CSA Binary to Excess-1 Converter (BEC) in order to reduce the sampling

period and area complexity. Reduction of power consumption is achieved in the proposed design by using a fast

bit clock for carry-save accumulation but a much slower clock for all other operations. It involves the same

number of multiplexors, smaller LUT, and nearly half the number of adders compared to the existing DA-based

design.

Index Terms: Adaptive filter, binary to excess-1 convertor(BEC) circuit optimization, distributed arithmetic

(DA), least mean square (LMS) algorithm.

I. Introduction
ADAPTIVE filters are widely used in several digital signal processing applications. The tapped-delay

line finite impulse response (FIR) filter whose weights are updated by the famous Widrow–Hoff least mean

square (LMS) algorithm is the most popularly used adaptive filter not only due to its simplicity but also due to

its satisfactory convergence performance . The direct form configuration on the forward path of the FIR filter

results in a long critical path due to an inner-product computation to obtain a filter output. Therefore, when the

input signal has a high sampling rate, it is necessary to reduce the critical path of the structure so that the critical

path could not exceed the sampling period. In recent years, the multiplier-less distributed arithmetic (DA)-based

technique has gained substantial popularity for its high-throughput processing capability and regularity, which

result in cost-effective and area–time efficient computing structures. Hardware-efficient DA-based design of

adaptive filter has been suggested using two separate lookup tables (LUTs) for filtering and weight update.

This brief proposes a novel DA-based architecture for low power, low-area, and high-throughput

pipelined implementation of adaptive filter with very low adaptation delay. The contributions of this brief are as

follows.

1) Throughput rate is significantly increased by a parallel LUT update.

2) Further enhancement of throughput is achieved by concurrent implementation of filtering and weight

updating.

3) Conventional adder-based shift accumulation is replaced by a conditional carry-save accumulation of signed

partial inner products to reduce the sampling period. The use of the proposed signed carry-save accumulation

also helps to reduce the area complexity of the proposed design.

4) Reduction of power consumption is achieved by using a fast bit clock for carry-save accumulation but a much

slower clock for all other operations.

5) The auxiliary control unit for address generation, which is not required in the proposed structure.

II. Review Of Lms Adaptive Algorithms
During each cycle, the LMS algorithm computes a filter output and an error value that is equal to the

difference between the current filter output and the desired response. The estimated error is then used to update

the filter weights in every training cycle. The weights of LMS adaptive filter during the nth iteration are updated

according to the following equations:

w(n + 1) = w(n) + μ. e(n). x(n) (1a)

where

 e(n) =d(n) − y(n) (1b)

 y(n) =w
qT

(n).x(n) (1c)

Optimization Of Adaptive Fir Filter For High Throughput, Low Power & Area Using Distributed

www.iosrjournals.org 70 | Page

The input vector x(n) and the weight vector w(n) at the nth training iteration are respectively given by

 x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]
T

 (2a)

w(n) = [w0(n), w1(n), . . . , wN−1(n)]
T

 (2b)

d(n) is the desired response, and y(n) is the filter output of the nth iteration. e(n) denotes the error computed

during the nth iteration, which is used to update the weights, μ is the convergence factor, and N is the filter

length.

In the case of pipelined designs, the feedback error e(n) becomes available after certain number of

cycles, called the “adaptation delay.” The pipelined architectures therefore use the delayed error e(n − m) for

updating the current weight instead of the most recent error, where m is the adaptation delay. The weight-update

equation of such delayed LMS adaptive filter is given by

 w(n + 1) = w(n) + μ. e(n − m). x(n − m). (3)

III. Da-Based Approach For Inner-Product Computation

The LMS adaptive filter, in each cycle, needs to perform an inner-product computation which

contributes to the most of the critical path. For simplicity of presentation, let the inner product of (1c) be given

by
 N-1

 k . xk (4)

where wk and xk for 0 ≤ k ≤ N − 1 form the N-point vectors corresponding the current weights and most recent N

− 1 input, respectively. Assuming L to be the bit width of the weight, each component of the weight vector may

be expressed in two’s complement representation
 L-1

 wk =-wk0 kl2
-l
 (5)

 l=1

where wkl denotes the lth bit of wk. Substituting (5), we can write (4) in an expanded form.

 N-1 N-1 L-1

 y = - k.wk0 k kl2
-l

(6)
 k=0 k=0 l=1

To convert the sum-of-products form of (4) into a distributed form, the order of summations over the

indices k and l in (6) can be interchanged to have

 N-1 L-1 N-1

 y = - k.wk0
-l

k wkl (7)
 k=0 l=1 k=0

and the inner product given by (7) can be computed as
 L-1

 y
-l
. y1]- y0, (8)

 l=1
where
 N-1

 y1 kl . xk

Since any element of the N-point bit sequence {wkl for 0 ≤ k ≤ N – 1} can either be zero or one, the

partial sum yl for l = 0, 1, . . . , L − 1 can have 2
N

 possible values. If all the 2
N

 possible values of yl are

precomputed and stored in a LUT, the partial sums yl can be read out from the LUT using the bit sequence {wkl}

as address bits for computing the inner product.

The inner product of (8) can therefore be calculated in L cycles of shift accumulation, followed by

LUT-read operations corresponding to L number of bit slices {wkl} for 0 ≤ l ≤ L − 1, as shown in Fig. 1. Since

Optimization Of Adaptive Fir Filter For High Throughput, Low Power & Area Using Distributed

www.iosrjournals.org 71 | Page

the shift accumulation in Fig. 1 involves significant critical path, we perform the shift accumulation using carry-

save accumulator, as shown in Fig. 2. The bit slices of vector w are fed one after the next in the least significant

bit (LSB) to the most significant bit (MSB) order to the carry-save accumulator. However, the negative (two’s

complement) of the LUT output needs to be accumulated in case of MSB slices. Therefore, all the bits of LUT

output are passed through XOR gates with a sign-control input which is set to one only when the MSB slice

appears as address.

Fig. 1. Conventional DA-based implementation of four-point inner product.

Fig. 2. Carry-save implementation of shift accumulation.

 The XOR gates thus produce the one’s complement of the LUT output corresponding to the MSB slice

but do not affect the output for other bit slices. Finally, the sum and carry words obtained after L clock cycles

are required to be added by a final adder (not shown in the figure), and the input carry of the final adder is

required to be set to one to account for the two’s complement operation of the LUT output corresponding to the

MSB slice. The content of the kth LUT location can be expressed as

 N-1

 ck j.kj (9)

where kj is the (j + 1)th bit of N-bit binary representation of integer k for 0 ≤ k ≤ 2

N
 − 1. Note that ck for 0 ≤ k ≤2

N

− 1can be precomputed and stored in RAM-based LUT of 2
N

 words. However, instead of storing 2
N

 words in

LUT, we store (2
N

 − 1) words in a DA table of 2
N

 − 1registers. An example of such a DA table for N = 4 is

shown in Fig. 3. It contains only 15 registers to store the precomputed sums of input words. Seven new values

of ck are computed by seven adders in parallel.

IV. Da-Based Adaptive Filter Structure
The computation of adaptive filters of large orders needs to be decomposed into small adaptive filtering

blocks since DA based implementation of inner product of long vectors requires a very large LUT [3].

Therefore, we describe here the DA-based structures of small- and large-order LMS adaptive filters separately

in the next two sections.

A. Structure of Small-Order Adaptive Filter

The structure of DA-based adaptive filter of length N = 4 is shown in Fig. 4. It consists of a four point

inner product block and a weight-increment block along with additional circuits for the computation of error

value e(n) and control word t for the barrel shifters. The four-point inner-product block [shown in Fig. 5(a)]

includes a DA table consisting of an array of 15 registers which stores the partial inner products yl for 0 < l ≤ 15

and a 16 : 1 multiplexor (MUX) to select the content of one of those registers.

Bit slices of weights A = {w3l w2l w1l w0l } for 0 ≤ l ≤ L − 1 are fed to the MUX as control in LSB-to-

MSB order, and the output of the MUX is fed to the carry-save accumulator (shown in Fig. 2). After L bit

Optimization Of Adaptive Fir Filter For High Throughput, Low Power & Area Using Distributed

www.iosrjournals.org 72 | Page

cycles, the carry-save accumulator shift accumulates all the partial inner products and generates a sum word and

a carry word of size (L + 2) bit each. The carry and sum words are shifted added with an input carry “1” to

generate filter output which is subsequently subtracted from the desired output d(n) to obtain the error e(n). The

magnitude of the computed error is decoded to generate the control word t for the barrel shifter. The logic used

for the generation of control word t to be used for the barrel shifter is shown in Fig. 5(c). The convergence factor

μ is usually taken.

Fig. 3. DA table for generation of possible sums of input samples.

Fig. 4.Structure of DA-based LMS adaptive filter of filter length N = 4.

Fig. 5. (a) Structure of the four-point inner-product block. (b) Structure of the weight-increment block for N = 4.

(c) Logic used for generation of control word t for the barrel shifter for L = 8.

Optimization Of Adaptive Fir Filter For High Throughput, Low Power & Area Using Distributed

www.iosrjournals.org 73 | Page

The weight-increment unit [shown in and four adder/subtractor cells. Fig. 5(b)] for N = 4 consists of

four barrel shifters The barrel shifter shifts the different input values xk for k = 0, 1, . . .,N − 1 by appropriate

number of locations (determined by the location of the most significant one in the estimated error). The barrel

shifter yields the desired increments to be added with or subtracted from the current weights. The sign bit of the

error is used as the control for adder/subtractor cells such that, when sign bit is zero or one, the barrel-shifter

output is respectively added with or subtracted from the content of the corresponding current value in the weight

register.

B. Structure of Large-Order Adaptive Filter

The inner-product computation of (4) can be decomposed into N/P (assuming that N = PQ) small

adaptive filtering blocks1 of filter length P as

 P-1 2P-1 N-1

 k.xk k.xk k.xk (10)
 k=0 k=P k=N-P

Each of these P-point inner-product computation blocks will accordingly have a weight-increment unit

to update P weights. The structure for N = 16 and P = 4 is shown in Fig. 6.The (L + 2)-bit sums and carry

produced by the four blocks are added by two separate binary adder trees. Four carry-in bits should be added to

sum words which are output of four 4-point inner-product blocks. Since the carry words are of double the

weight compared to the sum words, two carry-in bits are set as input carry at the first level binary adder tree of

carry words, which is equivalent to inclusion of four carry-in bits to the sum words. It should be noted that the

truncation does not affect the performance of the adaptive filter very much since the proposed design needs the

location of the most significant one of μe(n).

V. Proposed Da With Carry Save Adder Bec
Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to

perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is scope for reducing the

area and power consumption in the CSLA. The basic idea of this work is to use Binary to Excess-1 Converter

(BEC) instead of RCA with Cin=1in the regular CSLA to achieve lower area and power consumption The main

advantage of this BEC logic comes from the lesser number of logic gates than the n-bit Full Adder (FA)

structure. Table 1 shows the comparison of Synthesis results of DA structures in terms of area and power. Area

and power are significantly reduced.

Fig. 6. Structure of DA-based LMS adaptive filter of length N = 16 and P = 4.

Fig.7 Simulation result of DA-based LMS adaptive filter of filter length N = 4 using ModelSim

Optimization Of Adaptive Fir Filter For High Throughput, Low Power & Area Using Distributed

www.iosrjournals.org 74 | Page

Table 1 Comparison of Area and Power using Synthesis results
DA based LMS adaptive

filter

AREA(gate count) POWER(mV)

Ripple carry adder 9431 160.12

Carry save adder 9236 129.10

Carry save adder with
BEC

8432 127.61

VI. Conclusion
We have suggested an efficient pipelined architecture for low-power, high-throughput, and low-area

implementation of DA-based adaptive filter. Throughput rate is significantly enhanced by parallel LUT update

and concurrent processing of filtering operation and weight-update operation. We have alsoproposed a carry-

save accumulation BEC scheme of signed partial inner products for the computation of filter output. From the

Xilinx synthesis results, we find that the proposed design consumes less power and less area over our previous

DA-based FIR adaptive filter in average for filter lengths N = 16 and 32. Offset binary coding is popularly used

to reduce the LUT size to half for area-efficient implementation of DA which can be applied to our design as

well.

References
[1] S. Haykin and B. Widrow, Least-Mean-Square Adaptive Filters. Hoboken, NJ, USA: Wiley, 2003.

[2] S. A. White, “Applications of the distributed arithmetic to digital signal processing: A tutorial review,” IEEE ASSP Mag., vol. 6, no.
3, Jul. 1989.

[3] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, “LMS adaptive filters using distributed arithmetic for high

throughput,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337, Jul. 2005.
[4] R. Guo and L. S. DeBrunner, “Two high-performance adaptive filter implementation schemes using distributed arithmetic,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 60 Sep. 2011.
[5] R. Guo and L. S. DeBrunner, “A novel adaptive filter implementation scheme using distributed arithmetic,” in Proc. Asilomar Conf.

Signals,Syst., Comput., Nov. 2011, pp. 160–164.

[6] P. K. Meher and S. Y. Park, “High-throughput pipelined realization of adaptive FIR filter based on distributed arithmetic,” in VLSI
Symp. Tech. Dig., Oct. 2011, pp. 428–433.

[7] M. D. Meyer and P. Agrawal, “A modular pipelined implementation of a delayed LMS transversal adaptive filter,” in Proc. IEEE

Int. Symp. Circuits Syst., May 1990, pp. 1943–1946.

