IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
Volume 4, Issue 6, Ver. 11l (Nov - Dec. 2014), PP 50-55
e-1ISSN: 2319 — 4200, p-ISSN No. : 2319 — 4197
www.iosrjournals.org

Area Efficient Realization of Error Detection and Data Recovery
Architecture in Motion Estimation

T.Swetha Priya®, K.Prabhakara Rao®
12 Department of ECE, B.V.Raju Institute of Technology, Narsapur, Telangana State, INDIA

Abstract:. This paper proposes a built-in self-detection and correction (BISDC) architecture for motion
estimation computing arrays(MECAs).Based on the error detection & correction concepts of bi-residue codes,
any single error in each processing element in an MECA can be effectively detected and corrected online using
the proposed BISD and built-in self-correction circuits. Performance analysis and evaluation demonstrate that
the proposed BISDC architecture performs well in error detection and correction with minor area.

Keywords: Built-in self-detection and correction (BISDC), Block Matching Motion Estimation (BME)
algorithm, Digital Video Compression, Motion estimation computing arrays (MECA), video coding standard

I.  Introduction

The Motion Estimation Computing Array is used in Video Encoding applications to calculate the best
motion between the current frame and reference frames. The MECA is in decoding application occupies large
amount of area and timing penalty. By introducing the concept of Built-in Self-test technique the area overhead
is increased in less amount of area. Video data needs to be compressed before storage and transmission,
complex algorithms are required to eliminate the redundancy, extracting the redundant information. Motion
Estimation (ME) is the process of creating motion vectors to track the motion of objects within video footage. It
is an essential part of many compression standards and is a crucial component of the H.264 video compression
standard. Motion estimation is the technique of finding a suitable Motion Vector (MV) that best describes the
movement of a set of pixels from its original position within one frame to its new positions in the subsequent
frame. Encoding just the motion vector for the set of pixels requires significantly less bits than what is required
to encode the entire set of pixels, while still retaining enough information to reproduce the original video
sequence.

One of the main design goals is to reduce the computational complexity and power consumptions,
without sacrificing image quality. The simplest and most effective method of motion estimation is to
exhaustively compare each NxN macro block of the current frame with all the candidate blocks in the search
window defined with in the previous processed frame and find the best matching position with the lowest
distortion. This is called Full Search Block Matching algorithm (FSBM). Fig.1 gives details on motion
estimation we need to describe briefly how a video sequence is organized.

Motion-compensated

....predicion
: Subtract i o—
H— i
Current = H Image Encoded
[ frame 1B 8 encoder frame
Create
prediction

Motion
. vectors Full Search Block
Motion Matching using

estimation h ¥ systolic Array

— A
Previous Image
frame(s) decoder

_—

o

Fig. 1 Video Encoding System

A scene usually has at least three seconds. A movie in the cinema is shown as a sequence of still
pictures, at a rate of 24 frames per second. The name motion picture comes from the fact that a video, once
encoded, is nothing but a sequence of still pictures that are shown at a reasonably high frequency. That gives the
viewer the illusion that it is in fact a continuous animation. Each picture is composed of a number of pixels or

DOI: 10.9790/4200-04635055 www.iosrjournals.org 50 | Page



Area Efficient Realization of Error Detection and Data Recovery Architecture in Motion Estimation

peals (picture elements). A video frame has its pixels grouped in 8x8 blocks. The blocks are then grouped in
macro blocks (MB), which are composed of 4 luminance blocks each (plus equivalent chrominance blocks).
Macro blocks are then organized in “groups of blocks” (GOBs) which are grouped in pictures (or in layers and
then pictures). Pictures are further grouped in scenes, as described above, and we can consider scenes grouped
as movies. Motion estimation is often performed in the macro block domain. For simplicity’ sake we’ll refer to
the macro blocks as blocks, but we shall remember that most often the macro block domain is the one in use for
motion estimation. To meet real-time processing needs, several motion vector search strategies and hardware
designs have been proposed. These primarily focus on reducing the number of Sum-of-Absolute-Difference
(SAD) operations at the cost of controller complexity.

I1.  Background Study
2.1 Digital Video Compression

Video compression is achieved on two separate fronts by eliminating spatial redundancies and temporal
redundancies from video signals. Removing spatial redundancies involves the task of removing video
information that is consistently repeated within certain areas of a single frame. For example a frame shot of a
blue sky will have a consistent shade of blue across the entire frame. This information can be compressed
through the use of various discreet cosine transformations that map a given image in terms of its light or color
intensities. This paves the way for spatial compression by only capturing the distinct intensities, instead of the
spread of intensities over the entire frame.

Compression through the removal of temporal redundancies involves compressing information that is
repeated over a given sequence of frames. For example the objects in the background of a news anchor being
filmed are not likely to change over the course of the footage. This redundancy can be taken advantage of to
reduce the storage space required for the footage. When the background does happen to move, recording only
the motion of objects over consecutive frames in the form of motion vectors can still achieve significant
amounts of compression. Consequently, the motion estimation process is the process of deriving a suitable
Motion Vector (MV) that best describes the spatial movement of objects from one frame to the next.

2.2 Block Matching Motion Estimation

Block Matching Motion Estimation (BME) algorithm treats a frame as being composed of many
individual sub-frame blocks, known as macro Blocks. Motion vectors are then used to encode the motion of the
macro Blocks through frames of video via a frame by frame matching process. When a frame is brought into the
encoder for compression, it is referred to as the current frame. It is the goal of the BME unit to describe the
motion of the macro Blocks within the current frame relative to a set of reference frames. The reference frames
may be previous or future frames relative to the current frame. Each reference frame is also divided into a set of
sub frame blocks, which are equal to the size of the macro Blocks. These blocks are referred to as reference
Blocks. The BME algorithm will scan several candidate reference Blocks within a reference frame to find the
best match to a macro Block. Once the best reference Block is found a motion vector is then calculated to record
the spatial displacement of the macro Block relative to the matching reference Block, as shown in Fig.2.

2.3 Search Windows

When searching a reference frame for possible macro Block matches, the entire reference frame is not
searched. Instead the search is restricted within a search window. Search windows in most H.264
implementations have a size of 48-pixel (rows) x 63-pixel (columns). In this thesis, we use the same 48x63
search window size. This window consists of a vertical search range of [-16, +16] and a horizontal search range
of [-24, +23] pixels as illustrated in Fig. 3

- @

Mothon
Vector

s {F
- -]
Current Frame Reference Frame

Fig. 2. Block Matching between Current & reference frames

DOI: 10.9790/4200-04635055 www.iosrjournals.org 51 | Page



Area Efficient Realization of Error Detection and Data Recovery Architecture in Motion Estimation

r-\ 16 Pels,

B

Current Frame Reference Frame

Fig. 3. Search Window size Definition

In the Fig.3, the dashed large rectangle in the reference frame represents the 48x63 search window
area. The dashed square in the top left corner of the search window represents the first of the 1584 possible
candidate 16x16 reference Blocks. Each subsequent reference Block is offset by either one pixel row or one
pixel column from its predecessor while the entire search window area is covered by the overlapping candidate
reference Blocks. Note that the original 16x16 macro Block is positioned at the centre of the search window. In
order to compare it to every candidate reference Block within the search window, the macro Block has a
maximum displacement of 24 pixels to the left, 23 pixels to the right, 16 pixels up, and 16 pixels down from its
original position — resulting in a horizontal search range of [-24, +23] and a vertical search range of [-16, +16].

I11.  Proposed System & Designh Approach
3.1 BISDC Architecture
In this proposal the Built-in Self-test Technique (BIST) is included in the MECA and in each of
Processing Element in MECA. Thus by introducing the BIST Concept the testing is done internally without
Connecting outside testing Requirements. So the area required is also reduces. And in this Project the Errors in
MECA are Calculated and the Concept of Diagnoses i.e. Self-Detect and Self Repair Concepts are introduced.

Pramary mput T Frmany oups
i
", Erag foor dann ey
TCG EDC ) Datapecoven
> reml

iy
=

DRC

Fig. 4. Conceptual view of the proposed BISDC architecture

Fig.4 shows the conceptual view of the proposed BISDC scheme, which comprises two major circuit
designs, i.e. error detection circuit (EDC) and data recovery circuit (DRC), to detect errors and recover the
corresponding data in a specific CUT. The test code generator (TCG) in Fig. 1 utilizes the concepts of RQ code
to generate the corresponding test codes for error detection and data recovery. In other words, the test codes
from TCG and the primary output from CUT are delivered to EDC to determine whether the CUT has errors.
DRC is in charge of recovering data from TCG. Additionally, a selector is enabled to export error-free data or
data-recovery results. Importantly, an array based computing structure, such as ME, discrete cosine transform
(DCT), iterative logic array (ILA), and finite impulse filter (FIR), is feasible for the proposed BISDC scheme to
detect errors and recover the corresponding data.

This work adopts the systolic ME [19] as a CUT to demonstrate the feasibility of the proposed BISDC
architecture. A ME consists of many PEs incorporated in a 1-D or 2-D array for video encoding applications. A
PE generally consists of two ADDs (i.e. an 8-b ADD and a 12-b ADD) and an accumulator (ACC). Next, the 8-
b ADD (a pixel has 8-b data) is used to estimate the addition of the current pixel (Cur_pixel) and reference pixel
(Ref_pixel). Additionally, a 12-b ADD and an ACC are required to accumulate the results from the 8-b ADD in
order to determine the sum of absolute difference (SAD) value for video encoding applications. Notably, some
registers and latches may exist in ME to complete the data shift and storage. Fig.5 shows the proposed BISDC
circuit design for a specific PEi of a ME.

DOI: 10.9790/4200-04635055 www.iosrjournals.org 52 | Page



Area Efficient Realization of Error Detection and Data Recovery Architecture in Motion Estimation

Cur_pixel

Ref lel-_@ ——'ml B PEin
YT
] Ore, MUX
i
TCG
? B DRC
= o

Fig. 5. A specific PEi testing processes of the Proposed BISDC architecture

The self-detection and self-correction operations (Fig.5) are simply described as follows. First, the
input data of Cur. Pixel and Ref.pixel for a specific PEi in the MECA are sent to the test code generator (TCG)
to generate the corresponding test codes. Second, the test codes from the TCG and output data from the specific
PEi are detected and verified in Error Detection Circuit (EDC) to determine whether the specific PEi has an
error. In other words, the self-detection capability uses detection of the error. Third, the Data recovery circuit
(DRC) comes to play for error correction. Finally, the error correction data from DRC, or error-free data from
the EDC, are passed to the next specific PEi+1 for subsequent testing. Processing element calculates the sum of
absolute differences (SAD) between current pixels and reference pixels. Generally, a PE is made up of two

adders (an 8-bit adder and a 12-bit adder and accumulator and formulated as:
N—1N-

1
clp)—rG@-p
>3

i=0 j=
3.2 PE Array Architecture

PE is a module that calculates the absolute difference between the pixel of the reference block and the
pixel of the current block. Fig.6 shows the architecture of PE Array 4x4. To enable the reference data shifting to
top, bottom, right or left in PE Array 4x4, each PE is connected to the PE of top, bottom, and right or left one.
This structure generates SAD 4x1 by accumulating the absolute difference of each PE. Furthermore, SAD 4x4 is
generated by accumulating generated SAD 4x1.

Input cuz_pix — |
(70 | - | Chatgnat L JHoed |
Processing SAD o | et i
Element k. Lt ool
Ingeat Fef pix - 1k
- e —
l‘l I:I] l 4 P <Lb

Fig. 6. Processing Element Module Schematic Diagram & Array 4x4 architecture

3.3 SAD Module & RQ Code Generation

There are 16 SAD modules in the architecture, where each one is in charge of the SAD computation of
one primitive 4x4 sub-block in parallel, as shown in fig.7. In the SAD module, there are 16 absolute difference
computing unit processing the 16 pair of pixels in parallel, and then the 16 absolute residues are fed into the
adder unit to get one 4x4SAD.

DOI: 10.9790/4200-04635055 www.iosrjournals.org 53 | Page



Area Efficient Realization of Error Detection and Data Recovery Architecture in Motion Estimation

Cur_Block_Data 0 C].k N
Ref_Block_Data_0_ SAD module 0 —* iy
, Output out a
SwsokDaal Cur pix[7:0] . Coder . -
Ref Block Data 1 SAD module 1 ) 7 [3:0](quotient)
: ’ Module
CurﬁBIuckﬁE}ataﬁlS Ref_plx [70] N
Ref Block Data 15 SAD module 15 ’ .
Fig. 7 Basic Structure of SAD Modules Fig. 8 RQCG Schematic Diagram

Coding approaches such as parity code, Berger code, and residue code have been considered for design
applications to detect circuit errors. Residue code is generally separable arithmetic codes by estimating a residue
for data and appending it to data. Error detection logic for operations is typically derived by a separate residue
code, making the detection logic is simple and easily implemented. Error detection logic for operations is
typically derived using a separate residue code such that detection logic is simply and easily implemented.
However, only a bit error can be detected based on the residue code. Additionally, an error can’t be recovered
effectively by using the residue codes.

Therefore, this work presents a quotient code as shown in Fig.8, which is derived from the residue
code, to assist the residue code in detecting multiple errors and recovering errors. The corresponding circuit
design of the RQCG is easily realized by using the simple adders (ADDs). Namely, the RQ code can be
generated with a low complexity and little hardware cost. The mathematical model of RQ code is simply
described as follows. Assume that binary data X is expressed as

X=bn.1bn.2. . ...bzblbo: E}i:_ﬂi bj 2}'.

IV. Results

Two inputs a, b i.e. current and reference pixels each of 8-bit length and one output result also 8-bit
length. The behavioral simulation waveform for the Processing Element is shown in Fig. 9. The behavioral
simulation waveform for the Coder as a three inputs clk, cur_pix, ref_pix and each of 8-bit length and output
consists two coders i.e. out_a, out_b it consists of 4-bit length. The input of a coder is clk, current and reference
pixels are shown in Fig 10. The behavioral simulation waveform for the Modulus Division code as a two inputs
i.e. dividend, divider each of 8-bit length and it has one output it as a modulus 4 —bit of length is shown in
Fig.11. The behavioral simulation results for Top Module i.e., BISDC Architecture for MECA with inputs of
clk, cur_pixel[7:0], ref_pixel[7:0], PE Output, RQCG Output, TCG Output are given in Fig. 12.

Fig. 9. Simulation Waveform for Processing Element

410 —

s

Fig.12 Top Module Simulation Result of BISDC
Architecture

Fig. 11. Simulation Waveform of Modulus

DOI: 10.9790/4200-04635055 www.iosrjournals.org 54 | Page



Area Efficient Realization of Error Detection and Data Recovery Architecture in Motion Estimation

V.  Conclusion

This project proposes BISDC architecture for self-detection and self-correction of errors of PEs in an
ME. Based on the RQ code, a RQCG-based TCG design is developed to generate the corresponding test codes
to detect errors and recover data. Performance evaluation reveals that the proposed BISDC architecture
effectively achieves self-detection and self-correction capabilities with minimal area (LUT). The Functional-
simulation has been successfully carried out with the results matching with expected ones. The design functional
verification and Synthesis is done by using Xilinx-ISE 12.3 Version The input to the MECA is taken in binary
format. By Adding the Image to Bit Converter input to MECA is directly in the form of frames, timing required
for Motion Estimation will be reduced. The input to the MECA is 8-bit data. It also can be extended to higher
volume of data. But the Calculation time required is also high.

References

[1]. Advanced Video Coding for Generic Audiovisual Services, ISO/IEC 14496-10:2005 (E), Mar. 2005, ITU-T Rec. H.264 (E).

[2]. Information Technology-Coding of Audio-Visual Objects—Part 2: Visual, ISO/IEC 14 496-2, 1999.

[3]. Y. W. Huang, B. Y. Hsieh, S. Y. Chien, S. Y. Ma, and L. G. Chen, “Analysis and complexity reduction of multiple reference
frames motion estimation in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 507-522, Apr. 2006.

[4]. C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G. Chen, “Analysis and architecture design of variable
block-size motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 3, pp. 578-593, Mar. 2006.

[5]- T. H. Wu, Y. L. Tsai, and S. J. Chang, “An efficient design-for-testability scheme for motion estimation in H.264/AVC,” in Proc.
Int. Symp VLSI Design, Autom. Test, Apr. 2007, pp. 1-4.

[6]. M. Y. Dong, S. H. Yang, and S. K. Lu, “Design-for-testability techniques for motion estimation computing arrays,” in Proc. Int.
Conf. Commun., Circuits Syst., May 2008, pp. 1188-1191.

[7]. Y. S. Huang, C. J. Yang, and C. L. Hsu, “C-testable motion estimation design for video coding systems,” J. Electron. Sci. Technol.,
vol. 7, no.4, pp. 370-374, Dec. 2009.

DOI: 10.9790/4200-04635055 www.iosrjournals.org 55 | Page



