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Abstract: Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising 

techniques could enhance their value, provided that signal statistics and image resolution are not compromised. 

Here, a new denoising method based on wavelet based bayes shrinkage method of the measured noise power 

from each signal acquisition is presented. Bayes shrink method denoising assumes no prior knowledge of the 

acquired signal and does not increase acquisition time. Whereas conventional denoising/filtering methods are 

compromised in parallel imaging by spatially dependent noise statistics, wavelet based method is performed on 

signals acquired from MRI. Using numerical simulations, we show that proposed method can improve SNR in 

MRI reconstructed images without compromising image resolution. Application of Wavelet to MRI knee and 

DWI which achieved SNR improvements compared to conventional reconstruction. Comparison of Wavelet with 

standard filtering shows comparable SNR enhancement at low and high-SNR level and shows improved 

accuracy and retention of structural detail at a reduced computational load.  The proposed methodology can be 

applied on final MRI reconstructed images. We have compared the performance of Bayes shrink combined with 

fusion to the normal thresholding techniques  in order to enhance the visual quality of the image for proper 

diagnosis of disease.  

Keywords: Haar transform, db3 transform, Bayes shrinkage,   Fusion technique. 

 

I. Introduction 
Medical imaging is a popular technique applied in the medical field where the internal organs can be 

viewed without incursion of human body. Medical image processing comprises of several important tasks such 

as noise suppression, registration, segmentation, reconstruction and compression. Over the years, various 

effective algorithms are formulated to solve the medical imaging problems. Noise occurs [1] in medical images 

during two phases acquisition and transmission. During the acquisition phase, noise can occur in an image due 

to two reasons firstly, the image acquisition devices induces noise to images, as they are susceptible to thermal 

noise and statistical randomness in emission of photons secondly, the physiological interference, which is the 

inability of a patient to manage his or her physiological processes and systems. It is difficult for the doctors to 

diagnose and to get useful information from these images. The noise in the images are inevitable, and hence, 

removing the noise is mandatory for improving the quality of the images so that the doctors can make use of 

these images to make accurate diagnosis. noise [2] occurs in medical images due to image quick record and 

transmission. This type of noise is very prevalent in image transmission process and especially takes place in the 

signal channels of medical imaging equipment. Noise in a medical image affects clinical visualization and 

making diagnostic interpretations. In general, there are two techniques to reduce noise in medical images, the 

first direction is to acquire a second image which results in a longer acquisition time and increased cost of the 

medical equipment. The second one is to apply some image processing technique to reduce noise in an acquired 

image which usually requires less acquisition time and can reduce the computational load and cost of the 

machine.  

The modality MRI usually prone to this type of noise usually occurred in the transmission channels of 

multiple receiver coil in parallel MRI techniques (pMRI), in some protocols such as with diffusion weighted 

MRI imaging (DWI-MRI)sequence,  these images in regions with low signal levels causes high noise in these 

areas. To increase the SNR, it is common practice to average several acquisitions in order to reduce noise 

variance. However this approach is time consuming in terms of acquisition and not adequate for typical clinical 

settings where patient cannot remain still for extended periods of time. Denoising techniques can be applied to 

improve the image quality as a post processing step, thereby not increasing the scan time of the machine. 
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In the current modalities of the MRI machine the signal to noise ratio depends mainly on the strength 

of magnetic fields of the system. In lower field systems such as Philips/Siemens Intera MRI 1.5T, the SNR is 

very low, and it is common practice to average the sequences to improve the quality of the Image, extending the 

time scan is expensive prone to motion artifacts, unacceptable in many MRI applications. And increase the 

strength of the magnetic field from 1.5T-3.0T to improve the SNR but will introduce radiofrequency-

inhomogeneity artifacts, and demand high costs, because the noise attenuation requires high power supply 

devices to increase the super conduction effect [3,4]. The results suggest potential for practical application of the 

new method to boost SNR and hence reduce scan time in low magnetic field scanners. 

To mitigate the effect of above limitations, the manufacturers design parallel magnetic resonance 

imaging (pMRI) techniques in the current modalities can speed up MRI scan through a multi-channel coil 

array[4,5]. Nevertheless, noise amplification is serious in pMRI reconstructed images at high acceleration 

factor(R). Therefore it is necessary to introduce denoising procedure to improve the quality of pMRI image. 

These techniques have been well adopted with Multi-echo sequences and dynamic imaging protocols, and are 

frequently used clinically in applications throughout the body. Parallel imaging works by acquiring a reduced 

amount of k-space data with an array of multiple receiver coils. These under sampled data can be acquired more 

quickly, but the under sampling leads to aliased and noise images. One of several parallel imaging algorithms 

can be used to reconstruct noise or artifact free images from either the aliased images (SENSE-type 

reconstruction) or from the under sampled data (GRAPPA-type reconstruction)[6].The advantages of parallel 

imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-

hold times resulting in fewer motion-corrupted examinations. The number of receiver channels in the coil array 

limits the maximum acceleration factor(R). In general, the acceleration factor cannot be higher than the number 

of coils in the array, although this parameter is usually chosen to be much smaller in order to generate images 

of clinical quality. When R>2, it causes noises to be amplified hence need of denoising filters to enhance the 

quality of images for clinical purposes. The most parallel imaging reconstruction algorithms filters in the 

current MRI scanners in the clinical practice are sensitivity encoding (SENSE) and Generalized auto calibrating 

partially parallel acquisitions (GRAPPA).The coil sensitivity [6,7] describes how sensitive a given channel is to 

a specific point in space. The sensitivity is often dependent on the object in the receiver coil and therefore can 

vary from patient to patient. Because parallel imaging relies on these coil sensitivity differences, acceleration 

can only practically take place in directions with coil sensitivity variations. The only major drawback to the 

current parallel imaging reconstruction algorithm in MRI scanner (SENSE /GRAPPA) reconstruction is the 

need for an accurate coil sensitivity map. Errors in the coil sensitivity map will cause artifacts or noise in the 

form of residual aliasing in the reconstructed full field of view (FOV) image. There are many factors that can 

cause the sensitivity maps to be inaccurate. The coil sensitivity profiles depend on the placement of the coils 

relative to the anatomy being imaged. If the patient moves during the course of the examination, the coil 

sensitivities may change, and the resulting images can contain artifacts or noise. These artifacts or noise can be 

mitigated by reacquiring the information needed to calculate the sensitivity map and using these new maps in 

the reconstruction. Additionally, in regions with low signal levels, for instance, the brain or sinusitis images, it 

can be difficult to determine the sensitivity map due to the high noise in these areas. To mitigate these 

limitations an efficient Denoising algorithm is proposed to remove the noise and artifacts from the current 

available scanners. Artifacts such as residual spatial aliasing and noise enhancement can be mitigated by 

choosing an appropriate coil array and reconstruction algorithm and by optimizing the parallel imaging 

parameters (such as the acceleration construction factor(R), FOV, number of ACS lines, or GRAPPA kernel 

type). 

Choosing appropriate coil array becomes the overhead of cost and the additional hardware requirement. 

There is improvement in reconstruction algorithm, and to develop robust denoising filtering algorithm to 

improve the signal to noise ratio and resolution of the image.   

Several methods to measure the SNR have been described [8].They can be differentiated into methods 

based on a single image on a pair of images or on a series of many images. SNR measurements based on two 

ROIs in a single image (one in the tissue of interest, the other in the image background, i.e., in air, outside the 

imaged object) can be subdivided into methods using the standard deviation of the background intensity and 

those using the mean value of the background intensity. We refer to these “two region methods” as SNR 

standard deviation and SNR mean respectively. With the appropriate conversion factors derived from the noise 

statistics, both methods yield identical results. 

 

NOISE MODELLING IN MRI 

The main source of noise in MRI images is the thermal noise in the patient [9]. The MRI image is 

commonly reconstructed by computing the inverse discrete Fourier transform of the raw data [63]. The signal 

component of the measurements is present in both real and imaginary channels each of the two orthogonal 

channels is affected by additive white Gaussian noise. The noise in the reconstructed complex-valued data is 
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thus complex white Gaussian noise. Most commonly, the magnitude of the reconstructed MRI image is used for 

visual inspection and for automatic computer analysis. Since the magnitude of the MRI signal is the square root 

of the sum of the squares of two independent Gaussian variables, it follows a Rician distribution. In low 

intensity (dark) regions of the magnitude image, the Rician distribution tends to a Rayleigh distribution [9] and 

in high intensity (bright) regions it tends to a Gaussian distribution. A practical consequence is a reduced image 

contrast noise increases the mean value of pixel intensities in dark image regions. Due to the signal-dependent 

mean of the Rician noise, both the wavelet and the scaling coefficients of a noisy MRI image are biased 

estimates of their noise-free counterparts. In [9] it was shown that one can efficiently overcome this problem by 

filtering the square of the MRI magnitude image in the wavelet domain. In the squared magnitude image, data 

are non-central chi-square distributed, and the wavelet coefficients are no longer biased estimates of their 

Noise-free counterparts. The bias still remains in the scaling coefficients, but is not signal-dependent and it can 

be easily removed. 

 

II. Materials and Methods 
Materials 

The experiments were conducted on MRI datasets. The dataset consists of clinical MRI[10] collected 

from JSS hospital Mysuru    Karnataka, India. The proposed approach was evaluated with images  acquired 

using Spin Echo Sequences with long repetition time (TR) and short echo time (TE) by Philips 3.0T scanner. 

The detailed information of the imaging scanners is as follows: 

 

Philips 3.0Tscanner: PD (proton density) weighted sequence of MR knee image with ligament, with the 

acquisition parameters  

are TR=4.6sec, TE=30ms, slice thickness=2.5mm, Resolution of 672x672. Image Reconstruction: Sense, 

Reduction factor(Under sampling=6) 

Philips 3.0Tscanner: DWI data set (60 gradients, 1 baseline, matrix: 128 ×128 × 66, isotropic resolution 2 × 2 

× 2 m3) with a dual b value of 800 s/mm
2
 and 1000 s/m

2
 parallel MRI reconstruction: SENSE

     
 

 

Philips 3.0Tscanner: MRI T1 weighted Brain image with acquisition parameters are TR=5.3sec, TE=20ms, 

slice thickness=3.5mm, Resolution of 512x512. Parallel Image Reconstruction: SENSE 

 

Methods 

A. Image Denoising Methods.  

De-noising plays a very important role in the field of the medical image pre-processing. It is often done before 

the image data is to be analyzed. Denoising is mainly used to remove the noise that is present and retains the 

significant information, regardless of the frequency contents of the signal. It is entirely different content and 

retains low frequency content.  

There are two basic methods are used in image denoising purpose.  

1) Filtering method.  

2) Transform method.  

In Filtering method, a traditional way to remove noise from image data is to employ filters[11,12]. 

With filters, the noise is removed without any attempts to explicitly identify it. Spatial filters employ a low pass 

filtering on groups of pixels with the assumption that the noise occupies the higher region of frequency 

spectrum. Generally spatial filters remove noise to a reasonable extent but at the cost of blurring images which 

in turn makes the edges in pictures invisible, tend to blur sharp edges, destroy lines and other fine image details, 

and perform poorly in the presence of signal-dependent noise. 

For de-noising there are two transforms methods are available.  

1) Fourier Transform: This method refers use of low pass filters using Fast Fourier Transform (FFT). In 

frequency smoothing methods the removal of the noise is achieved by designing a frequency domain filter and 

adapting a cut-off frequency when the noise components are de-correlated from the useful signal in the 

frequency domain. These methods are time consuming and depend on the cut-off frequency and the filter 

function behaviour. Furthermore, they may produce artificial frequencies in the processed image.  

2) Wavelet Transform: A brief introduction to wavelet transform is given subsequent sections.  

 

B. Haar wavelet transform:  

In our method we use the Haar wavelet to perform the Wavelet transform [11,12]. It is the simplest of 

all wavelets and its operation is easy to understand.  Haar wavelets have their limitations too.  They are 

piecewise constant and   hence produce   irregular blocky approximations.  However these wavelets are not easy 

to comprehend and are also computationally intensive. 
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C.  Daubechies wavelet transform: Daubechies wavelet is the first wavelet family which has set of scaling 

function[13,14] which are orthogonal. This wavelet has finite vanishing moments. Daubechies wavelets have 

balanced frequency responses but non linear phase responses.  Daubechies  wavelets  are  useful  in  

compression  and     noise  removal  of  audio  signal processing because of its property of overlapping windows 

and the high frequency coefficient spectrum reflect all high frequency changes. 

 

D. Bayes shrinkage 

The Bayes Shrink wavelet thresholding adopts the Bayesian approach [15,16]which assumes the 

knowledge of the probability distribution of the original signal and seeks to optimize the threshold operator for 

the purpose of minimizing the expected risk. In particular, it is assumed that for the various sub-bands and 

decomposition levels, the wavelet coefficients of the original image follow approximately a Generalized 

Gaussian Distribution (GGD). 

 

In the wavelet domain, we have the relationship 

𝑌𝑗
𝑠𝑢𝑏 = 𝑋𝑗

𝑠𝑢𝑏 + 𝑊𝑗
𝑠𝑢𝑏

                                                                          (1) 

Due to the independence assumption between the original signal „x‟ and the noise „w‟, the joint distribution of 

𝑋𝑗
𝑠𝑢𝑏

 and  𝑊𝑗
𝑠𝑢𝑏

 is the product distribution of  𝑋𝑗
𝑠𝑢𝑏

 and 𝑊𝑗
𝑠𝑢𝑏

. The conditional probability distribution of  

𝑋𝑗
𝑠𝑢𝑏

 , given the observed noisy wavelet coefficients  𝑌𝑗
𝑠𝑢𝑏

 , is called the posterior distribution. This posterior 

distribution can be used to construct a decision soft thresholding operator that computes a de-noised estimate 

𝑋 𝑗
𝑠𝑢𝑏 = 𝑇 𝑋𝑗

𝑠𝑢𝑏 , 𝜆  of  𝑋𝑗
𝑠𝑢𝑏

 from the noisy data  𝑌𝑗
𝑠𝑢𝑏

 by minimizing the bayes risk. 

This section focuses on the estimation of the GGD parameters 𝜎𝑋 and 𝛽 which in turn yields a data-driven 

estimate of 𝑇𝐵 𝜎𝑋   that is adaptive to different sub band characteristics. The noise variance 𝜎2 needs to be 

estimated first. In some situations, it may be possible to measure 𝜎2  based on information other than the 

corrupted image. If such is not the case, it is estimated from the sub band 𝐻𝐻1 by the robust median estimator 

 

σ =
Median ( Y ij  )

0.6745
 , Yij ∈ subband HH1                                             (2) 

 

The parameter 𝛽 does not explicitly enter into the expression of 𝑇𝐵 𝜎𝑋  , only the signal standard 

deviation, 𝜎𝑋  , does. Therefore it suffices to estimate directly 𝜎𝑋 or 𝜎𝑋
2

 . 

Recall the observation model is Y= X+V, with X and V independent of each other, hence 

     

     𝜎𝑌
2 = 𝜎𝑋

2 + 𝜎2                                       (3) 

 

Where 𝜎𝑌
2 is the variance of Y. Since Y is modeled as zero mean, 𝜎𝑌

2  can be found empirically by 

 

     𝜎 𝑌
2 =

1

𝑛2
  𝑌𝑖,𝑗

2𝑛
𝑖,𝑗=1                                   (4) 

 

Where 𝑛 × 𝑛 is the size of the subband under Consideration. Thus 

 

     𝑇 𝐵 𝜎 𝑋 =
𝜎 2

𝜎 𝑋
                                                 (5) 

Where 

    𝜎 𝑋 =  max⁡(𝜎 𝑌
2 − 𝜎 2 , 0)                                    (6) 

 

 In the case that 𝜎 2 ≥ 𝜎 𝑌
2  , 𝜎 𝑋  is taken to be 0. That is 𝑇 𝐵 𝜎 𝑋 , is , or, in practice,𝑇 𝐵 𝜎 𝑋 =

max⁡( 𝑌𝑖,𝑗  ) , and all coefficients are set to 0. This happens at times when 𝜎 is large (for example, 𝜎 > 20 

for a grayscale image).  

To summarize, we refer to our method as Bayes Shrink which performs soft thresholding, with the data-driven, 

subband dependent threshold, 

 

   𝑇 𝐵 𝜎 𝑋 =
𝜎 2

𝜎 𝑋
                                                                    (7) 
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E. Image fusion  

Image fusion is the process [17, 18] of combining information of interest in two or more images of a 

scene into a single highly informative image. Information of interest depends on the application under 

consideration. The aim of image fusion is to integrate complementary as well as redundant information from 

multiple images to create a fused image output. Therefore, the new image generated should contain a more 

accurate description of the scene than any of the individual source images and is more suitable for human visual 

and machine perception or further image processing and analysis tasks. For medical image fusion, the fusion of 

images can often lead to additional clinical information not apparent in the separate images. Another advantage 

is that it can reduce the storage cost by storing just the single fused image instead of multisource images. 

 

F. Simple Average method 

The value of the pixel of each image is taken and added. This sum is then divided by 2 to obtain the 

average. The average value is assigned to the corresponding pixel of the output image. The pixels in the 

resultant fused image are obtained by taking average of the every corresponding pixel in the input images. 

 

G. Proposed Algorithm Implementation 

 Add noise to the MRI image. 

 Noises added here is Rican, which is the magnitude of the real and complex value of the Gaussian noise. 

 Decompose the noisy image using forward discrete HAAR wavelet transform. 

 Level of decomposition selected is L=4. 

 Threshold the horizontal, vertical and diagonal coefficients using soft thresholding, hard thresholding and 

bayes shrink separately. 

 Reconstruct the image using inverse discrete HAAR wavelet transform applying level 4 reconstruction. 

 Decompose the noisy image using forward discrete DB3 wavelet transform. 

 Level of decomposition selected is L=4. 

 Threshold the horizontal, vertical and diagonal coefficients using soft thresholding, hard thresholding and 

bayes shrink separately. 

 Reconstruct the image using inverse discrete DB3 wavelet transform applying level 4 reconstruction. 

 Fuse the two restored images obtained using HAAR and DB3 wavelets using simple average method 
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III. Results And Discussion 
Experiments and Results 

Numerical simulations for MRI reconstructed images are based on the 512×512 low-SNR DWI image. 

DWI images are prone to low signal to noise ratio and introduce bias in the reconstructed image. It is clear from 

the denoised results in Figs. 2  and  3  that  the  proposed  filtering  achieves  much  closer  result  to  the  

original  image than  the  image  filtered  with  other  standard filter.  Qualitatively,  the  proposed   filter  

provides  better  preservation  of  fine structures,  good  contrast  between  tissues  and  fewer  oscillations over  

homogeneous  areas  and  better  noise  removal  over  the  other methods  under  considerations.  proposed  

filtering  method  can  contributes  significantly  in  the  noise removal  as  well  as  in  the  image  structure  

preservation.  It is cleared from the results in figure that the proposed filter achieves closer result to the original 

image in which it is effectively estimate the diffusion tensor parameters like fractional Anisotropy (FA) and 

tractrography for the brain connectivity required for the Alzheimer disease detection for diffusion weighted 

images. The proposed filtering parameters depends upon the standard level of noise (σ) here DWI images are 

corrupted by rician noise and the proposed filter is better edge preservation. The proposed filter works well for 

both low SNR and high SNR data and to avoid over smoothing over the tissue boundaries to preserve the edge 

information corrupted by Rician noise required further segmentation to classify whether the tissue is benign or 

malignant.  The performance of the proposed filter is better understood by PSNR versus noise level as shown in 

table1 and graph1.From these analysis the proposed Bayes shrink with fusion improve its visual quality as well 

as edge preservation. From graph1 it is observed that proposed filter is good choice for removing Rician noise 

compared to Gaussian noise is judged by the PSNR values. The performance of the image quality index versus 

noise level as shown in graph2. From these it is observed that the proposed Bayes shrink fusion method which 

enhances the image quality index for Rician noise compared to additive white Gaussian noise most of the papers 

from the literature are based on filtering of Gaussian noise (high SNR data) but the proposed filter is robust for 

low SNR data especially for HARDI-DWI data. Fig.1 shows the performance of reconstruction filter in which 

MRI knee image with ligament is corrupted by Rician noise the proposed approach shows better preservation of 

the edge details with minimal blurring. The application of proposed technique can be applied to DWI image as 

shown in fig.2. In which it is prone to low SNR corrupted by non-Gaussian distribution called Rician noise 

distribution it restores the original image and effectively finds the diffusion parameters like ADC(ansitriophic 

diffusion coefficient) and fractional anstriophy(FA) required  for the fiber tracking and the detection of 

alzamieir disease. The restoring performance of the proposed filter for  MRI T1 weighted image is as shown in 

fig.3. Better edge preservation and enhancement of the anatomical details compared to other thresholding 

methods.  

              

PERFORMANCE PARAMETERS 

The quality of the denoising filter  is evaluated using the performance metrics[19] are defined as follows 

1) Peak Signal to Noise Ratio (PSNR): 

PSNR values can be calculated by comparing two images one is original image and other is distorted image .The 

PSNR has been computed using the following formula:  

 

                                         𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑅2

𝑀𝑆𝐸
)                        (8) 

 

Where R is the maximum fluctuation in the input image data type. If the input is an 8-bit unsigned integer data 

type, R is 255, etc. 

 

2) Mean Squared Error (MSE):  

One obvious way of measuring this similarity is to compute an error signal by subtracting the test signal from 

the reference, and then computing the average energy of the error signal. The mean-squared-error (MSE) is the 

simplest, and the most widely used for image quality measurement.  

 

                      𝑀𝑆𝐸 =
1

𝑀𝑁
    𝑥 𝑖, 𝑗 − 𝑦 𝑖, 𝑗  

2𝑁
𝑗=1

𝑀
𝑖=1                             (9) 

 

Where x(i, j) represents the original image and y(i , j) represents the denoised (modified) image and i and j are 

the pixel position of the M×N image. MSE is zero when x(i, j) = y(i, j) . 

 

3) Image quality index (Q)  

It is mathematically defined by modeling the image distortion relative to the reference image as a combination 

of three factors: loss of correlation, luminance distortion, and contrast distortion.  
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  Q =
σ fg

σ fσg
 

2 f   g 

(f )2+ g  2
 

2 σ fσg

σ f
2+σg

2                                                               (10) 

 

        
Original image                       Noisy image (Rician) 

 

Restored image using HAAR wavelet 

             
Soft thresholding                  hard thresholding                      bayes shrink 

 

Restored image using DB3 wavelet(rician) 

                
Soft thresholding                   hard thresholding                                Bayes shrink 

 

Restored image using fusion (rician) 

             
Soft thresholding               hard thresholding                                   bayes shrink 

Fig.1. MRI knee image  corrupted by Rician noise 
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Fig.2. MRI Diffusion weighted image corrupted by Rician noise 

 

 
                                             Fig.3. MRI T1 weighted Brain image corrupted by  Rician noise 
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Table1: Performance parameters of MRI knee image corrupted by Rician noise –PSNR v/s noise level 

Rician noise: 
Noise 

Level 

(𝜎) 

Haar wavelet DB3 wavelet Fusion 

𝜆𝑈𝑁𝐼𝑉  Bayes 

Shrink 
𝜆𝑈𝑁𝐼𝑉  Bayes 

Shrink 
𝜆𝑈𝑁𝐼𝑉  Bayes 

shrink Soft hard Soft hard Soft hard 

10 26.0397 28.1698 29.6475 26.6462 28.6039 30.0209 26.7381 29.1061 30.1421 

20 22.2134 23.5839 24.4402 22.7524 23.9805 24.6937 22.6999 24.2298 24.8199 

30 19.5907 20.5457 21.0913 20.0812 20.7380 21.2678 19.9622 20.8978 21.3484 

 

Graph 1: Performance parameters of MRI knee image corrupted by  Rician noise –PSNR v/s 

noise level. 

 
X-axis→ 𝑁𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝜎                           

Y-axis → 𝑃𝑆𝑁𝑅 𝑖𝑛 𝑑𝐵 

 

Graph 2: Performance parameters of MRI knee image corrupted by Rician noise –Image quality index 

v/s noise level. 

 
X-axis→ noise level in terms of standard deviation(σ) 

Y-axis→ Image quality index (Q) 
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IV. Conclusion 
The denoising of MRI images is performed using Bayes shrink with fusion method and compared with 

standard thresholding methods. The peak signal-to-noise ratio (PSNR) and image quality index are calculated 

and it is found that our proposed filter achieves better edge preservation and enhancement of anatomical details 

and is best suited for low and high corrupted level of noise. Comparison of Wavelet with standard filtering 

shows comparable SNR enhancement at low-SNR levels and high level of noise, but improved accuracy and 

retention of structural detail at a reduced computational load. Our proposed filter shows significant improvement 

in case of DWI images for fiber tracking and diagnosis of alzemeir disease. This will be beneficial for various 

applications, such as q-space imaging and diffusion kurtosis imaging. 

 

V. Future scope 
The above methods are being performed on image resolution of 512x512 and work is being done to 

remove   Rician noise from MRI images and future plan is to make it valuable for high resolution of images and 

to develop adaptive shrinkage technique to remove high level of noise and to improve PSNR from medical 

images. In this paper we have provided an experimental validation of the proposed method to deal with Rician 

noise perturbed images. A mathematical validation of the proposed technique for the given noise distribution 

remains to be performed. Further, as mentioned earlier, some of the current generation MR images no longer 

satisfy the assumption of Rician noise. 
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