
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 9, Issue 2, Ser. I (Mar. - Apr. 2019), PP 44-47

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0902014447 www.iosrjournals.org 44 | Page

Efficient Hardware Implementation of 32-Bit Single Cycle RISC

Microprocessor

Meghana Shanthappa
Graphics Hardware Design Engineer, intel Corporation, USA

Corresponding Author: Meghana Shanthappa

Abstract : Any microprocessor is the heart of any general purpose computing systems which is a form of

embedded system. The total efficiency of the system is mainly depends upon the efficiency of the main processing

elements. In this paper we proposed efficient hardware architecture for 32-bit microprocessor. The proposed

architecture is implemented on Digilent ATLYS (Spartan-6) board and the coding is done by VHDL language.

For synthesis purpose we use Xilinx ISE 14.5 version. The proposed architecture is optimized with respect to

various hardware parameters such as power, frequency etc. which is discussed in the paper briefly. The main

reason for these optimizations is simpler architectures of internal components.

Keywords - RISC Architecture, Microprocessor, FPGA implementation, Parallel Processing, Instruction Set

etc.

--- ----------

Date of Submission: 13-05-2019 Date of acceptance: 30-05-2019

--- ----------

I. Introduction
Due to revolution of electronics, now a day‟s operating system based embedded system gained more

popularity. This is mainly due to the re-configurability features which are based on operating system through

microcode. This will give the user to add or remove additional optional features. The heart of such system must

contain either microcontroller or microprocessor as central processing system. Since the processing element acts

as vital role of the overall performance of the respective embedded system, the architecture must be optimized

in all sorts of hardware and software aspects.

Most of the general purpose computing system uses microprocessor as central processing unit. To

implement any microprocessor various architectures are invented, among them RISC based architecture is most

popular. With that architecture to support parallel task execution MIPS techniques [1] are used. In this paper we

propose efficient hardware architecture for 32-bit microprocessor. The comparison result shows that the

proposed architecture is better compared to existing architectures.

Cesar et al., [2] presented Adiabatic computing based on MIPS microprocessor. To overcome the

power dissipation, the authors used Adiabatic computing process. To show the power dissipation comparison

the authors built the MIPS microprocessor using both CMOS technique and Adiabatic technique. Both

structures were designed using backend custom design tools. The comparison result shows effective power

reduction in the case of Adiabatic processor. Buse and Berna [3] presented 32-bit MIPS microprocessor based

on fault tolerant technique. The main advantage of this technique is that fault tolerant capability. The proposed

architecture is implemented on Cadence tool using 90 nm CMOS technology. Ahmed Eissa et al., [4] proposed

the optimized architecture of instruction set of a microprocessor based on Secure Hash Algorithm. For

implementing this approach the authors used two techniques namely Native Datapath and Coprocessor Based

design. Both approaches were implemented on Virtex-6 FPGA. The comparison result shows the hardware area

reduction in the case of both architectures. Jikku Jeemon [5] presented 8-bit pipelined microprocessor using

Harvard architecture. For improving the performance, parallism was implemented. In this case one instruction is

executed in each clock cycle. The architecture was designed using verilog language and verified in Spartan-3E

FPGA board. Ritpukar et al., [6] presented 32-bit RISC processor. The main aim of this paper was to understand

the working of each sub-modules present in the processor architecture. Here each module is coded using VHDL

language and synthesized using Xilinx ISE 13.1i software. Kui and Yue [7] designed an efficient 32-bit RISC

processor instruction decoder module. This architecture was designed using VHDL language and implemented

on Quartus-II FPGA.

Contributions: The main contributions of this paper are (i). The whole architecture is divided into suitable sub-

blocks and the architecture of each sub-blocks are optimized. (ii). The Op-Code structure is made such way that

the corresponding encoding and decoding circuits are simpler.

Efficient Hardware Implementation Of 32-Bit Single Cycle RISC Microprocessor

DOI: 10.9790/4200-0902014447 www.iosrjournals.org 45 | Page

II. Proposed Architecture
The proposed architecture for RISC microprocessor is given in Fig.1. It consists of Adder, Shifter, Memory,

ALU etc.

Fig.1: Proposed 32-bit RISC Microprocessor Architecture

2.1. Arithmetic Logic Unit (ALU):The operating management unit is implemented by ALU to perform all the

logical operations relating to registers, like adding, subtracting, ANDing, ORing etc. At this point the design had

all the practicality necessary for ALU. However, we split the ALU in three elements as Sign extender, ALU

management unit and ALU.

2.1.1. Main ALU: The main ALU is used to perform all arithmetic and logic related operations. This module is

integrated one of the MUX to reduce hardware complexity. The MUX is present in between register files “Read

Data 2” output and sign extender output in Fig.1 is used for this purpose.

2.1.2. Sign Extender: The sign extender is required to implement the actual CPU for performing signed

operation along with unsigned operation. Here we used 32 bits Sign Extender Unit for our design.

2.2. ALU Control Unit: We implemented ALU control unit for providing proper command defined by the

operation. Basically the task of the ALU control unit is to specify what type of arithmetic operation the main

ALU has to carry out is given in Table 1.

Table 1: Functions of ALU Control Unit
Op-Code ALUOp Operation instr ALU function ALUCtr

lw 00 Load word XXXXXX Add 010

sw 00 Store word XXXXXX Add 010

beq 01 Branch if equal XXXXXX subtract 110

R_type 10

Add 100000 Add 010

Subtract 100010 Subtract 110

AND 100100 AND 000

OR 100101 OR 001

SLT 101010 Set on less than 111

2.3. Control Unit: One of the fundamental modules for a hardware is that the operation management in terms of

Control unit. This unit is different from „ALU Control‟ unit and this „Control Unit‟ is that the first block is used

Efficient Hardware Implementation Of 32-Bit Single Cycle RISC Microprocessor

DOI: 10.9790/4200-0902014447 www.iosrjournals.org 46 | Page

to control the operation of ALU only and this block is used to control the whole architecture. The main

functions of this unit is lw, beq, bne, j, add, sub, and, or, slt, addi etc shown in Fig.1.

2.4. Instruction Memory: It is used to store the instructions in terms of some binary numbers. This is mainly a

single ROM module. The operation of this module as follows

1. The address is only an input from PC.

2. The data width of this module is 32 bits.

3. With simple operation we are accessing sequentially the array address by a step of 4. Instead of skipping 3

array elements on every iteration.

2.5. Instruction Fetch: To implemented actual instruction fetch circuit we divided the task in multiple subtasks

of different single circuit elements as Adder, Binary multiplexer, Left shifter by 2 and Program Counter. The

Adder and Binary multiplexer are implemented by normal method. The left shifter is customized in this

architecture. At first we thought of making an n-bit shifter, where our component could be reused for different

amounts of shift. The PC is implemented separately to make the circuit design easier. The proposed PC passes

the input value on output at every rising edge of the input clock.

2.6. Data Memory and Register Files: The data memory and register files are mainly used to store

intermediate calculation values at various stages respectively. The operations of those memories are controlled

by „Control Unit‟ block. To implement both memories we used write first RAM architecture.

III. Fpga Implementation
The proposed architecture is implemented on Xilinx ATLYS Board which having Spartan-6

XC6SLX45-3CSG324 chip. The proposed architecture is coded using VHDL language and Xilinx ISE 14.5 is

used for synthesis purpose. The RTL schematic of the proposed microprocessor is given in Fig.2.

Fig.2: RTL Schematic of Proposed 32-bit RISC Microprocessor

The hardware utilizations and maximum operating frequency of the architecture is given in Table 2.

The proposed architecture uses 552 slice registers, 676 slice LUTs, 128 bytes of memories, 2

BUFG/BUFGCTRLs. The minimum period of the architecture is 12.280 ns and the maximum frequency is

81.435 MHz. The total power requirement of the architecture is 0.037 W.

Efficient Hardware Implementation Of 32-Bit Single Cycle RISC Microprocessor

DOI: 10.9790/4200-0902014447 www.iosrjournals.org 47 | Page

Table 2: Hardware Utilizations of the Proposed Architectures
Parameters Utilizations

FPGA Board Spartan-6 (XC6SLX45-3CGG324)

Slice Registers 552

Slice LUTs 676

Memory 128

LUT-FF Pairs 72

BUFG/BUFGCTRLs 2

Minimum Period (ns) 12.280

Maximum Frequency (MHz) 81.435

Power (W) 0.037

IV. Comparisons with Existing Techniques
The comparison of existing techniques with proposed technique is given in Table 3. The architecture

presented by Galani et al., [8] was based on normal technique. This architecture was implemented on Virtex-4

FPGA board. The total power required by this architecture is 0.829 Watts. The minimum period is 18.243 ns

and the maximum frequency is 54.815 MHz. Similarly the architecture presented by Neha and Pradeep [9] uses

five stages of pipeline to implement parallel architecture. This will increase the area and power requirements.

This architecture was implemented on Spartan-6 FPGA board. The maximum operating frequency of the

architecture is 70.313 MHz and minimum period is 14.222 ns. Whereas the proposed architecture required only

0.037 Watts power and maximum frequency and minimum period are 81.435 MHz and 12.280 ns.

Table 3: Hardware Comparisons of the Proposed Architectures with Existing Architectures
Parameters Galani Tina et al., [8] Neha and Pradeep [9] Proposed

FPGA Virtex-4 Spartan-6 Spartan-6

Power (W) 0.829 ---- 0.037

Minimum Period (ns) 18.243 14.222 12.280

Maximum Frequency (MHz) 54.815 70.313 81.435

V. Conclusion And Future Works
In this paper we proposed efficient 32-bit microprocessor architecture. The total architecture can be

able to perform any operation just in single cycle whereas most of the existing architectures required more than

one clock cycle. Also due to the simpler architecture, the overall area and power requirements of the proposed

processor is less than existing and the overall operating frequency is higher than existing. The proposed

architecture is designed using Xilinx ISE 14.5 tool. For implementation purpose we use Digilent ATLYS FPGA

board and on-chip verification is done using Chipscope Software through IP cores provided by Xilinx.

REFERENCES
[1]. https://en.wikipedia.org/wiki/MIPS_architecture.
[2]. Cesar O. Campos-Aguillon, Rene Celis-Cordova, Ismo K. Hanninen, Craig S. Lent, Alexi O. Orlov and G. Regory L. Snider, “A

Mini MIPS Microprocessor for Adabatic Computing”, IEEE International Conference on Rebooting Computing, pp. 1-7, 2016,

USA.
[3]. Buse Uataoglu and Berna Ors Yalcin, “Reliability Analysis of MIPS-32 Microprocessor Register File Designed with Different Fault

Tolerant Technique”, IEEE International Conference on Signal Processing and Communication Application, pp. 1-6, 2016, Turkey.

[4]. Ahmed S Eissa, Mahmoud A Elmohr, Mostafa A Saleh, Khaled E Ahmed and Mohammed M Farag, “SHA-3 Instruction Set
Extension for a 32-bit RISC Processor Architecture”, 27th IEEE International Conference on Application Specific System,

Architecture and Processors, pp. 233-234, 2016, UK.

[5]. Jikku Jeemon, “Pipelined 8-bit RISC Processor Design using verilog HDL on FPGA”, IEEE International Conference on Recent
Trends in Electronics, Information and Communication Technology, pp. 2023-2027, 2016, India.

[6]. S. P. Ritpurkar, M. N. Thakare and G. D. Korde, “Synthesis and Simulation of a 32-bit MIPS RISC Processor using VHDL”, IEEE

International Conference on Advances in Engineering and Technology Research, pp. 1-6, 2014, India.
[7]. Kui Yi and Yue-Hua Ding, “32-bit RISC CPU Based on MIPS Instruction Decoder Module”, 2nd IEEE Pacific-Asia Conference on

Web Mining and Web Based Applications, pp. 1-5, 2009, China.

[8]. Galani Tina, Riya Saini and R. D. Daruwala, “Design and Implementation of 32-bit RISC processor using Xilinx”, International
Journal of Emerging Trends in Electrical and Electronics, pp. 18-24, Vol. 5, Issue. 1, 2013.

[9]. Neha Dwivedi and Pradeep Chhawcharia, “Design and Implementation of 32-bit RISC Processor with Five Stage Pipeline”,

Proceding of International Conference on Recent Innovations in Engineering and Technology, pp. 84-88, 2017, India.

Meghana Shanthappa" Efficient Hardware Implementation of 32-Bit Single Cycle RISC

Microprocessor" IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) , vol. 9, no. 2,

2019, pp. 44-47.

