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Abstract : Any microprocessor is the heart of any general purpose computing systems which is a form of 

embedded system. The total efficiency of the system is mainly depends upon the efficiency of the main processing 

elements. In this paper we proposed efficient hardware architecture for 32-bit microprocessor. The proposed 

architecture is implemented on Digilent ATLYS (Spartan-6) board and the coding is done by VHDL language. 

For synthesis purpose we use Xilinx ISE 14.5 version. The proposed architecture is optimized with respect to 

various hardware parameters such as power, frequency etc. which is discussed in the paper briefly. The main 

reason for these optimizations is simpler architectures of internal components. 
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I. Introduction 
Due to revolution of electronics, now a day‟s operating system based embedded system gained more 

popularity. This is mainly due to the re-configurability features which are based on operating system through 

microcode. This will give the user to add or remove additional optional features. The heart of such system must 

contain either microcontroller or microprocessor as central processing system. Since the processing element acts 

as vital role of the overall performance of the respective embedded system, the architecture must be optimized 

in all sorts of hardware and software aspects. 

Most of the general purpose computing system uses microprocessor as central processing unit. To 

implement any microprocessor various architectures are invented, among them RISC based architecture is most 

popular. With that architecture to support parallel task execution MIPS techniques [1] are used. In this paper we 

propose efficient hardware architecture for 32-bit microprocessor. The comparison result shows that the 

proposed architecture is better compared to existing architectures. 

Cesar et al., [2] presented Adiabatic computing based on MIPS microprocessor. To overcome the 

power dissipation, the authors used Adiabatic computing process. To show the power dissipation comparison 

the authors built the MIPS microprocessor using both CMOS technique and Adiabatic technique. Both 

structures were designed using backend custom design tools. The comparison result shows effective power 

reduction in the case of Adiabatic processor. Buse and Berna [3] presented 32-bit MIPS microprocessor based 

on fault tolerant technique. The main advantage of this technique is that fault tolerant capability. The proposed 

architecture is implemented on Cadence tool using 90 nm CMOS technology. Ahmed Eissa et al., [4] proposed 

the optimized architecture of instruction set of a microprocessor based on Secure Hash Algorithm. For 

implementing this approach the authors used two techniques namely Native Datapath and Coprocessor Based 

design. Both approaches were implemented on Virtex-6 FPGA. The comparison result shows the hardware area 

reduction in the case of both architectures. Jikku Jeemon [5] presented 8-bit pipelined microprocessor using 

Harvard architecture. For improving the performance, parallism was implemented. In this case one instruction is 

executed in each clock cycle. The architecture was designed using verilog language and verified in Spartan-3E 

FPGA board. Ritpukar et al., [6] presented 32-bit RISC processor. The main aim of this paper was to understand 

the working of each sub-modules present in the processor architecture. Here each module is coded using VHDL 

language and synthesized using Xilinx ISE 13.1i software. Kui and Yue [7] designed an efficient 32-bit RISC 

processor instruction decoder module. This architecture was designed using VHDL language and implemented 

on Quartus-II FPGA. 

Contributions: The main contributions of this paper are (i). The whole architecture is divided into suitable sub-

blocks and the architecture of each sub-blocks are optimized. (ii). The Op-Code structure is made such way that 

the corresponding encoding and decoding circuits are simpler. 
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II. Proposed Architecture 
The proposed architecture for RISC microprocessor is given in Fig.1. It consists of Adder, Shifter, Memory, 

ALU etc.  

 
Fig.1: Proposed 32-bit RISC Microprocessor Architecture 

 

2.1. Arithmetic Logic Unit (ALU):The operating management unit is implemented by ALU to perform all the 

logical operations relating to registers, like adding, subtracting, ANDing, ORing etc. At this point the design had 

all the practicality necessary for ALU. However, we split the ALU in three elements as Sign extender, ALU 

management unit and ALU.  

 

2.1.1. Main ALU: The main ALU is used to perform all arithmetic and logic related operations. This module is 

integrated one of the MUX to reduce hardware complexity. The MUX is present in between register files “Read 

Data 2” output and sign extender output in Fig.1 is used for this purpose. 

 

2.1.2. Sign Extender: The sign extender is required to implement the actual CPU for performing signed 

operation along with unsigned operation. Here we used 32 bits Sign Extender Unit for our design.  

 

2.2. ALU Control Unit: We implemented ALU control unit for providing proper command defined by the 

operation. Basically the task of the ALU control unit is to specify what type of arithmetic operation the main 

ALU has to carry out is given in Table 1.  

 

 

Table 1: Functions of ALU Control Unit 
Op-Code ALUOp Operation instr ALU function ALUCtr 

lw 00 Load word XXXXXX Add 010 

sw 00 Store word XXXXXX Add 010 

beq 01 Branch if equal XXXXXX subtract 110 

R_type 10 

Add 100000 Add 010 

Subtract 100010 Subtract 110 

AND 100100 AND 000 

OR 100101 OR 001 

SLT 101010 Set on less than 111 

 

2.3. Control Unit: One of the fundamental modules for a hardware is that the operation management in terms of 

Control unit. This unit is different from „ALU Control‟ unit and this „Control Unit‟ is that the first block is used 
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to control the operation of ALU only and this block is used to control the whole architecture. The main 

functions of this unit is lw, beq, bne, j, add, sub, and, or, slt, addi etc shown in Fig.1.  

 

2.4. Instruction Memory: It is used to store the instructions in terms of some binary numbers. This is mainly a 

single ROM module. The operation of this module as follows 

1. The address is only an input from PC. 

2. The data width of this module is 32 bits. 

3. With simple operation we are accessing sequentially the array address by a step of 4. Instead of skipping 3 

array elements on every iteration. 

 

2.5. Instruction Fetch: To implemented actual instruction fetch circuit we divided the task in multiple subtasks 

of different single circuit elements as Adder, Binary multiplexer, Left shifter by 2 and Program Counter. The 

Adder and Binary multiplexer are implemented by normal method. The left shifter is customized in this 

architecture. At first we thought of making an n-bit shifter, where our component could be reused for different 

amounts of shift. The PC is implemented separately to make the circuit design easier. The proposed PC passes 

the input value on output at every rising edge of the input clock.  

 

2.6. Data Memory and Register Files: The data memory and register files are mainly used to store 

intermediate calculation values at various stages respectively. The operations of those memories are controlled 

by „Control Unit‟ block. To implement both memories we used write first RAM architecture. 

 

III. Fpga Implementation 
The proposed architecture is implemented on Xilinx ATLYS Board which having Spartan-6 

XC6SLX45-3CSG324 chip. The proposed architecture is coded using VHDL language and Xilinx ISE 14.5 is 

used for synthesis purpose. The RTL schematic of the proposed microprocessor is given in Fig.2. 

 

 
Fig.2: RTL Schematic of Proposed 32-bit RISC Microprocessor 

 

The hardware utilizations and maximum operating frequency of the architecture is given in Table 2. 

The proposed architecture uses 552 slice registers, 676 slice LUTs, 128 bytes of memories, 2 

BUFG/BUFGCTRLs. The minimum period of the architecture is 12.280 ns and the maximum frequency is 

81.435 MHz. The total power requirement of the architecture is 0.037 W. 
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Table 2: Hardware Utilizations of the Proposed Architectures 
Parameters Utilizations 

FPGA Board Spartan-6 (XC6SLX45-3CGG324) 

Slice Registers 552 

Slice LUTs 676 

Memory 128 

LUT-FF Pairs 72 

BUFG/BUFGCTRLs 2 

Minimum Period (ns) 12.280 

Maximum Frequency (MHz) 81.435 

Power (W) 0.037 

 

IV. Comparisons with Existing Techniques 
The comparison of existing techniques with proposed technique is given in Table 3. The architecture 

presented by Galani et al., [8] was based on normal technique. This architecture was implemented on Virtex-4 

FPGA board. The total power required by this architecture is 0.829 Watts. The minimum period is 18.243 ns 

and the maximum frequency is 54.815 MHz. Similarly the architecture presented by Neha and Pradeep [9] uses 

five stages of pipeline to implement parallel architecture. This will increase the area and power requirements. 

This architecture was implemented on Spartan-6 FPGA board. The maximum operating frequency of the 

architecture is 70.313 MHz and minimum period is 14.222 ns. Whereas the proposed architecture required only 

0.037 Watts power and maximum frequency and minimum period are 81.435 MHz and 12.280 ns.  

 

Table 3: Hardware Comparisons of the Proposed Architectures with Existing Architectures 
Parameters Galani Tina et al., [8] Neha and Pradeep [9] Proposed 

FPGA Virtex-4 Spartan-6 Spartan-6 

Power (W) 0.829 ---- 0.037 

Minimum Period (ns) 18.243 14.222 12.280 

Maximum Frequency (MHz) 54.815 70.313 81.435 

 

V. Conclusion And Future Works 
In this paper we proposed efficient 32-bit microprocessor architecture. The total architecture can be 

able to perform any operation just in single cycle whereas most of the existing architectures required more than 

one clock cycle. Also due to the simpler architecture, the overall area and power requirements of the proposed 

processor is less than existing and the overall operating frequency is higher than existing. The proposed 

architecture is designed using Xilinx ISE 14.5 tool. For implementation purpose we use Digilent ATLYS FPGA 

board and on-chip verification is done using Chipscope Software through IP cores provided by Xilinx. 
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