Volume-2 ~ Issue-6
- Citation
- Abstract
- Reference
- Full PDF
Keywords: credit period, ramp type demand , shortages, Weibull deterioration
[2] Sanjay Jain and Kumar Mukesh ,An EOQ Inventory model with ramp type demand, weibull distribution deterioration and starting with shortage, OPSARCH Vol.44(2007), 240-250.
[3] T.Chakrabarty, B.C. Giri,. and K.S.Chaudhury, An EOQ Inventory Model for items with weibull distribution deterioration, shortages and trended demand: An extension of Philip's model, Computers and Operations Research, 25(1998), 649-657.
[4] A.K.Jalan, R.R.Giri,.a nd K.S.Chaudhuris, EOQ model for items with weibull distribution deterioration, shortages and trended demand, International Journal of system science, 27(1996), 851-856.
[5] N.H.Shah, and Y.K.Shah, A Discrete-In-Time Probabilistic Inventory Model for Deteriorating Items under conditions of Permissible delay in Payment, International Journal of System Science, 29(1998), 121-126.
[6] S.P.Aggarwal, and C.K.Jaggi, Ordering policies of Deteriorating items under conditions of permissible delay in payments. Journal of operational research society, 46(1995), 658-662.
[7] Manisha Pal, And K.Sanjay Ghosh, An Inventory model with stock dependent demand and general rate of deterioration under conditions of permissible delay in payments,vol.44( 2007), OPSEARCH, 227-239.
[8] S. Hardik., J.Shah, Bhavin and H.Shah Nita.: An EOQ model for deteriorating items with progressive payment sheme under DCF approach, Vol.43(2006), OPSEARCH, 238-257.
[9] A.M.M. Jamal, B.R Sarkar, S.Wang, Optimal payment time for a retailer under permitted delay payments by the wholesaler. International Journal of Production Economic 66(2000), 59-66.
[10] G.Padmanabhan, and P.Vrat, EOQ model for permissible items under stock dependent selling price, European Journal of operational Research, 8.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | A Note on Prime Square Dominating Graph |
Country | : | India |
Authors | : | A. Sudhakaraiah, B. Narayana |
: | 10.9790/5728-0261013 | |
Keywords: Dominating graph, Prime dominating graph, Prime Square Dominating graph, minimal dominating, minimal prime square dominating graphs.
[2]. Joseph A. Gallian, "A Dynamic Survey of graph labeling", the electronic journal of combinatorics #D S 6, 2005.
[3]. Narsing Deo "Graph Theory with Applications to Engineering and Computer Science", Prentice-Hall of India Pvt. Ltd., 1997.
[4]. S.R. Sudarshan Iyangar, Somindu C.R and Swathi Srivatsan, "Discrete Mathematics and its Applications", Narosa Publication, New Delhi, 2006. PP169-174.
[5]. Satyanarayana Bhavanari and Syam Prasad K., "Discrete Mathematics and Graph Theory", Printice Hall of India, New Delhi, 2009.
[6]. Seod M.A.and Youssef M.Z., "On prime labeling of graphs", Congr. Numer.141(1999), 203-215.
[7]. West D. B. "Introduction to Graph Theory – 2nd Edition", Prentice Hall of India, New Delhi, 2002.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Some Domination Parameters of Arithmetic Graph Vn |
Country | : | India |
Authors | : | S.Uma Maheswari and B.Maheswari |
: | 10.9790/5728-0261418 | |
Keywords: Arithmetic graph, Domination, Total domination, Independent domination, Connected domination.
[1]. Nathanson, Melvyn B. - Connected components of arithmetic graphs, Monat. fur. Math, 29, 1980. 219 – 220.
[2]. Vasumathi, N. - Number theoretic graphs, Ph. D. Thesis, S.V.University, Tirupati, India, 1994.
[3]. Berge, C. - The Theory of Graphs and its Applications,( Methuen, London) , 1962.
[4]. Ore, O. - Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962.
[5]. Haynes, T. W., Hedetniemi, S.T., Slater, P.J. - Domination in graphs: Advanced Topics ( Marcel Dekker, Inc., New York), 1998.
[6]. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. - Fundamentals of domination in graphs (Marcel Dekker, Inc., New York) , 1998.
[7]. Cockayne, C.J. , Dawes, R.M., Hedetniemi, S.T. - Total domination in graphs, Networks, 10, 1980, 211-219.
[8]. Allan, R.B., Laskar, R.C., Hedetniemi, S.T. - A note on total domination, Discrete Math. 49, 1984, 7-13 .
[9]. Allan, R.B, Laskar, R.C. - On domination and independent domination numbers of a graph, Discrete Math, 23, 1978, 73-76.
[10]. Sampathkumar, E., Walikar, H.B. - The connected domination number of a graph, Math.Phys. Sci.,13, 1979, 607-613.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Analysis of Self Similar Motion in the Theory of Stellar Explosion |
Country | : | India |
Authors | : | Jitendra Kumar Soni |
: | 10.9790/5728-0261923 | |
[1]. Carrus P.A., Fox P.A. hans F and Kopal Z; Astrophys. J. 113: 193, (1951).
[2]. J. Sedov ; Similarity and dimensional methods in mechanics
[3]. D. Summer; Astron Astrophys, 45: 151, (1975)
[4]. Singh, J.B. and Srivastava ; Anexially symmetric explosion model in magnetogasdynamics, Astrophy and Space Sci. 79 :355,
(1981).
[5]. Vishwakarma, J.P. & Yadav, A.K ; Eur. Phys. J.B. 34,25: 247, (2003)
[6]. Chakrabarti,S.K.&Mandal S; Astrophys. Space Sci. 309:163-166, (2007)
[7]. Singh, L.P. and Hussain: An analytical study of strong non planer shock waves in magnetogasdynamics, J. Adv. Theor. App. Mech., 3 no 6 :291, (2010)
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Isomorphism on Fuzzy Hypergraphs |
Country | : | India |
Authors | : | C.Radhamani, C.Radhika |
: | 10.9790/5728-0262431 | |
Keywords - Fuzzy hypergraph, co-weak isomophismr, weak isomorphism, equivalence relation
[1]. Moderson , J.N, and P .S. Nair Fuzzy Graphs and Fuzzy Hypergraphs Physica verlag ,Heidelberg 1998 ; Second Edition 2001.
[2]. A.Nagoorgani and J.Malarvizhi ., Isomorphism on Fuzzy Graphs.
[3]. C.Berge., Graphes et Hypergraphes. Dunod ,Paris,(Graphs and Hypergraphs, North-Holland,Amsterdam, 1973, revised
translation)1970.
[4]. Bhutani, K.R., On Automorphism of Fuzzy graphs, Pattern Recognition Letter 9: 159-162,1989.
[5]. Bhattacharya, P, Some Remarks on fuzzy graphs, pattern Recognition Letter 6: 297-302, 1987.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | An Inttegrall Concerniing H--Functtiions |
Country | : | India |
Authors | : | V. B. L. Chaurasia, Yaghvendra Kumawat |
: | 10.9790/5728-0263235 | |
[1] P. Anandani and H. S. P. Srivastava: On Mellin transform of product involving Fox‟s H -function and a generalized function of two
variables, Comment. Math. Univ. St. Pauli. XXI-2 (1972), 35-42.
[2] B. L. J. Braaksma: Asymptotic expansions and analytic continuations for a class of Barnes integrals, Compos. Math. 15 (1963),
239-341.
[3] C. Fox: The G- and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.
[4] K. C. Gupta and U. C. Jain: The H-function-II, Proc. Nat. Acad. Sci. India, 36 (1966), 594-609.
[5] U. C. Jain: On an integral involving the H-function, The Journal of the Australian Mathematical Society, VIII-2 (1968), 373-376.
[6] S. S. Khadia and A. N. Goyal: On the generalized function of "n" variables, Vijnana Parishad Anusandhan Patrika 13 (1970), 191-
201; Math. Reviews 46 (1973), p.359, #2104.
[7] R. K. Saxena: An integral involving products of G-functions, Proc. Nat. Acad. Sci. India, 36 (1966), 47-48.
[8] P. Skibińiski: Some expansion theorems for the H-functions, Ann. Polon. Math, 23 (1970), 125-138.
[9] H. M. Srivastava, K.C. Gupta and S. P. Goyal: The H-functions of one and two variables with applications, South Asian Publishers,
New Delhi-Madras, 1982.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | K-derivation and symmetric bi-k-derivation on Gamma Banach Algebras |
Country | : | India |
Authors | : | P. Rajkhowa, Md. Shahidul Islam Khan |
: | 10.9790/5728-0263647 | |
AMS subject classification Code: 17D20 (γ, δ)
Key words: k-derivation, symmetric bi-k-derivation, centroid.
[1] C.Selvaraj and S.Petchimuthu, On strongly Prime Gamma Rings, International J. of Algebra, 2(2008), 933-943.
[2] D. K. Bhattacharya and A. K. Maity, Semilinear tensor product of Gamma Banach Algebras, Ganita,140(1989), 75-80.
[3] H.Kandamar, The k-derivation of a Gamma-Ring, Jurk.J. Math, 24 (2000), 221-231.
[4] J. Luh, On the theory of simple Gamma rings,Michigan Math. 16(1969), 65-75.
[5] M. Ali Ozturk and y-Imaz Ceven, On (,)-Gamma-Derivations in Gamma-Near-Rings, Advances in Algebra, 1(2008),1-10
[6] M. Ali Ozturk and Young Bae Jun, On the Centroid of the prime Gamma rings, Comm. Korean Math. Soc., 15 (2000), 469-479.
[7] N. Nobusawa, on a generalization of the ring theory, Osaka J. Math. 1(1964), 81-89.
[8] N.B.Okelo, M.O. Okongo and S.A. Nyoukiti, On projective Tensor Norm and Norm-Attainable - derivation, Int. J.Contemp. Math. Sciences, 5 (2010), 1969-1975.
[9] S.Chakraborty and A.Ch. paul, On Jordan k-derivation of 2-torsion free prime N -Rings, Journal of Mathematics, 40 (2008), 97-101
[10] S.Kyuno, On prime Gamma Rings, Pacific J. of Mathematics, 75(1978), 185-190.