Volume-3 ~ Issue-1
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Hypergeometric Functions and Lucas Numbers |
Country | : | India |
Authors | : | P. Rajkhowa, Ananta Kumar Bora |
: | 10.9790/5728-0310109 | |
[2] G.E. Andrews, Richard Askey, Ranjan Roy ``Special Functions",Cambridge University press 1999.
[3] W.N. Bailey.`` Generalized Hypergeometric Series". Cambrige: Cambridge University Press, 1935.
[4] C.Jordan. ``Calculus of Finite Differences". New York : Chelsea, 1950.
[5] Thomas Koshy. ``Fibonacci and Lucas Numbers with Applications", 2001.
[6] E.D. Rainville. ``Special Functions", New York : Macmillan, 1967.
[7] J.Riordan. ``Cambinatorial Identities". Huntington. New York: Krieger, 1979.
[8] M.Abramowitz and I.A.Stegun. ``Handbook of Mathematical Functions". Washington, D.C.: National Bureau of standards, 1964.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | On A New Class of Numbers |
Country | : | India |
Authors | : | P. Rajkhowa, Ananta Kumar Bora |
: | 10.9790/5728-0311016 | |
[2] C.Jordan. ``Calculus of Finite Differences". New York : Chelsea, 1950.
[3] J.Riordan. ``Cambinatorial Identities". Huntington. New York:Krieger, 1979
[4] E.D. Rainville. ``Special Functions", New York : Macmillan, 1967.
- Citation
- Abstract
- Reference
- Full PDF
[1] H. Bénard, Les tourbillions cellulaires dans une nappe liquid, Revue Genérale des Sciences Pures et Appliquees 11 (1900), 1261- 1271, 1309-1328.
[2] L. Rayleigh, On convective currents in a horizontal layer of fluid when the higher temperature is on the underside, Philosophical Magazine 32 (1916), 529-546.
[3] H. Jeffreys, The stability of a fluid layer heated from below, Philosophical Magazine 2 (1926), 833-844.
[4] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York (1981).
[5] J.G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastic-viscous Liquids, Proceedings of the Royal Society of London A245 (1958), 278-297.
[6] R.S. Rivlin andJ.L. Ericksen, Stress deformation relations for isotropic materials, J. Rat. Mech. Anal.,4 (1955), 323.
[7] P.K. Bhatia and J.M. Steiner, Convective instability in a rotating viscoelastic fluid layer, Zeitschrift fur Angewandte Mathematik and Mechanik 52 (1972), 321-327.
[8] P.K. Bhatia and J.M. Steiner, Thermal Instability in a viscoelastic fluid layer in hydromagnetics, Journal of Mathematical Analysis and Applications 41 (1973), no. 2,271-283.
[9] R.C. Sharma, Effect of rotation on thermal instability of a viscoelastic fluid, Acta Physica Hungarica 40 (1976), 11-17.
[10] R.C. Sharma Thermal instability in a viscoelastic fluid in hydromagnetics, Acta Physica Hungarica 38 (1975), 293-298.
- Citation
- Abstract
- Reference
- Full PDF
Keywords: Burgers equation, Moving mesh, Modified average Method, Discretization , Stability
[1] HUANG . W . & RUSSELL.R.D(2001), "Adaptive mesh movement- the MMPDE approach & its applications". J. comput. Appl .math, 128,383-398.
[2] MADZVAMUSE,A.,MAINI,P.K.,WATHEN,A.J(2005), "A moving grid finite element method for the simulation of pattern generation by turning model on growing domains"J.Sci.Comput.,24,247-262.
[3] BAINE S , M . J . (2001) , "Moving finite element , least squares ,& finite volume approximations of steady & time dependent PDE "s in multidimensions . J. comput .App . math,128,363-381 .
[4] H.Beteman. "Some recent researches on the motion of fluids",Mon.Weather Rev.43(1915)163-170.
[5] J. M. Burger, "A Mathematical model illustrating the theory of turbulence" Adv.Appl.Mech 1(1948)171-199.
[6] E.Hopf. "The partial differential equation t x xx u uu u ", Commun, pure Appl.Math3 (1950)301-330.
[7] J.D.Cole, "On a quasi linear parabolic equations occurring in aerodynamics" ,Quart.Appl.Math9(1951)225-236.
[8] N.Su.Australia "Burgers equation for water dynamics in solids on Eroding Hillslopes proceeding 4(43) Applied simulation & modeling 2004.
[9] Edris Dag Ali sahin, "Numerical solution of Burgers Equation over geometrically graded mesh" year 2007 volume 36 issue 510,721-735.
[10] Ronald E.mickens, " Exact solution to different equations models of Burgers equation".Numerical methods for partial differential equation volume 2 issue page123-129-2005 A wiley company
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | On The Sublattice [I, C0] Of the Lattice of Cech Closure Operators |
Country | : | India |
Authors | : | Baby Chacko |
: | 10.9790/5728-0313739 | |
Keywords: lattice of all closure operators on a set X, infra closure operator, atomistic lattice, lattice
isomorphism, lattice automorphism, reflexive relation.
[1] Baby Chacko, Some Lattice Theoretic Problems Related to Set Topology and Fuzzy Topology, Thesis for Ph.D. Degree, University
of Calicut, Kerala., 2008.
[2] Cech Edward , Topological Spaces, Rev. Ed.Wiley, New York, 1966.
[3] Garrett Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. Vol.25, Amer. Math.Soc. Providence, 1967.
[4] Juris Hartmanis, On the Lattice of Topologies, Cand. J . Math. 10 (1958), 547-553.
[5] Otto Frolich, Das Halbordnungssystem derTopologischen Raume auf einer Menge, Math. Ann. 156, (1964), 79-85.
[6] Ramachandran P. T. , Some Problems in Set Topology Relating Group of Homeomorphisms and Order, Thesis for Ph.D. Degree,
Cochin University of Science and Technology, 1985.
[7] Stephen Willard, General Topology, Addison Wesley Publishing Co. 1970.
- Citation
- Abstract
- Reference
- Full PDF
Keywords: Laminar flow, MHD, Annular channel.
[1] Abdul Malaque, K.H and Abdul Sattar, Md., International Journal of Heat and Mass Transfer, Vol.48, p.4963, 2005.
[2] Andersson, H.I., and Korte. E.de., European Journal of Mechanics, Vol.21, p.317, 2002.
[3] Chekmarer, I.G. Zhur. Tekh fig.30, 601, 1960
[4] Globe, S. Phy. Fluids 2, 404, 1959.
[5] Hartmann, J. and Iazarus, F.Kgl. Danske Videnskab, Selekab, Matt-Phys. Medd.15 No.6 and 7, 1937.
[6] Ingham D.B. Journal of Aerosols Science, Vol.22, p.253, 1991.
[7] Jain, P.K., Nourmohammadi, K., and R.Y. R.P., Nuclear Engineering and design, Vol.60, p.401, 1980.
[8] Kumari, M., and Nath. G., International Journal of engineering science, Vol.42, p.1817, 2004.
[9] Rossow, V.J., NACA – TN 3971, 1957.
[10] Shah. V.L., and Farnia, K., Computers and Fluids, Vol.2, p.285, 1974.
- Citation
- Abstract
- Reference
- Full PDF
Key words: Reimann-Liouville and Erdelyi-Kober fractional operatore, Fractional derivative formulae, General class of polynomials, Multivariable A -function, Generalized Leibnitz rule.
[1] Fox, C.; The G and H -functions as symmetrical Fourier kernels, Trans. Amer.Math. Soc. 98 (1961), 395-429.
[2] Gautam, B.P., Asgar, A.S. and Goyal, A.N.; On the multivariable A -function, Vijnana Parishad Anusandhan Patrika, vol. 29(4),
67-81.
[3] Gupta, K.C. and Agarwal, S.M.; Fractional integral formulae involving a general class of polynomials and the multivariable H
function, Proc. Indian Acad. Sci. (Math. Sci) 99 (1989), 169-173.
[4] Gupta, K.C. , Agarwal, S.M. and Soni, R.C.; Fractional integral formulae involving the multivariable H -function and a general
class of polynomials, Indian J. Pure Appl. Math. 21(1990), 70-77.
[5] Gupta, K.C. and Soni, R.C.; A study of H -functions of one and several variables, J. Rajastahan Acad. Phys. Sci. 1(2002), 89-
94.
[6] Mathai A.M. and Saxena , R.K.; The H -function with Applications in Statistics and Other Disciplines,John Wiley & Sons, New
Delhi(1978).
[7] Miler, K.S. and Ross, B.; An introduction to the fractional calculus and fractional differential equations, John-Wiley & Sons,
(1993).
[8] Oldham, K.B. and Spanier, J.; The fractional Calculus, Academic Press, NewYork (1974).
[9] Saigo, M.A. ; A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyunshu. Univ.
11(1978), 135-143.
[10] Saigo, M and Raina, R.K.; Fractional calculus operators associated with a general class polynomials, Fukuoka Univ. Reports
18(1988), 15-22.