Volume-4 ~ Issue-1
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Modeling of Sugar Production in India based on Principal Component |
Country | : | India |
Authors | : | Shivagaje Ashok.J. , Kasture Madhukar.S. |
: | 10.9790/5728-0410106 |
Keywords -Autocorrelation, eigen values, matrix plot, principal component, residual.
[2] R.N. Tiwary, Impact of World Trade Organization on Agricultural Development of India. Co-operative Sugar. 35(7), 2004, 537-
540.
[3] A.M. Kshirsagar, Multivariate Analysis, (Marcel and Dekker New York,1972)
[4] A.J.M. Sufian, Analyzing Collinear Data by Principal Component Regression Approach – An Example from Developing Countries,
Journal of Data Science 3, 2005, 221-232.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Hamiltonian Laceability in a Class of 4-Regular Graphs |
Country | : | India |
Authors | : | Girisha .A, H. Mariswamy, R. Murali, G. Rajendra4 |
: | 10.9790/5728-0410712 |
Keywords: Brick product, Connected graph, Hamiltonian-t-laceable graph. 2000 Mathematics subject classification: 05C45, 05C99
[2] Leena N. shenoy and R.Murali, Laceability on a class of Regular Graphs, International Journal of computational Science and
Mathematics, volume 2, Number 3 (2010), 397-406.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | On R-Closed Maps and R-Homeomorphisms in Topological Spaces |
Country | : | India |
Authors | : | P. Krishna, Dr. J. Antony Rex Rodrigo |
: | 10.9790/5728-0411319 | |
Keyword: R-closed maps, R-open maps, R-homeomorphism, R*-homeomorphism, strongly Rclosed maps, perfectly R-closed maps.
[1] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D Thesis Bharathiar University, Coimbatore (sep 2002).
[2] R. Devi, Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D thesis, Bharathiar University, Coimbatore (1994).
[3] Mashhour, Abd-El-Monsef. E, L. Deep, On pre continuous and weak pre continuous mappings, Pro. Math and phys.soc.,Egypt,53,47-53(1982).
[4] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly. 70(1963)36-41.
[5] J. Njasted ,On some classes of nearly open sets,Pacific.J.Math,15,961-970(1965).
[6] D. Andrijevic, Semi pre open sets,Mat.Versnik,38,24-32(1986).
[7] N. Levine, Generalized closed sets in topology,Rend.circl,Mat.Palermo,19(2),89-96(1970).
[8] H. Maki, R. Devi, K. Balachandran, Associated topologies of generalized closed sets, Mem. Fac. sci. Kochi Univ (Math)15,51-63(1994).
[9] J. Dontchev, On generalizing Semi pre open sets, Mem. Fac. Sci. Kochi Univ (Math),16,35-48(1995).
[10] T. Noiri, H. Maki, J. Umehara, Generalised preclosed functions, Mem. Fac. sci. Kohci Univ .Ser.A.Maths.,19,13-20(1998).
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | The Complex Model Of The Quantum Universe |
Country | : | India |
Authors | : | Dr. Narayan Kumar Bhadra |
: | 10.9790/5728-0412033 |
[2] P. J. E. Peebles, and B. Ratra, Astrophy. J. Let t. 325. L17 (1988) : A. R. G. Vishwakarma, Class. Quant. Grav.
14. 945(1997). .F. Hoyle. G. Burbidge and J. V. Nar likar, Mon. R. Astron. Soc. 286. 173(1997).
[3] T. A. Appelquist, A. Chodos and P. G. O. Freund, Modern Kaluza –Klein Theor ies, Frontiers in Physics Ser ies,
(Volume 65), 1986 (Ed. Addison Wesely). Brian Greene, The Elegant Universe, W.W.Nor ton&Company , New
York (1999), pp. 357 – 358. A. G. Riess et al. Astrophys. J. 560, 49(2001).
[4] F. Hoyle & J. V. Narlikar , A new theory of gra vi tation. Proc. R. Soc. , A282, 191 (1964).F. Hoyle & J. V.
Narlikar, A conformal theory of gravitation. Proc. Roy. Soc. , A294, 138 (1996).
[5] A. Einstein & W. deSitter , on the relation between the expansion and the mean density of the universe. Proc.
Natl. Acad. Sci. (USA), 18, 213(1932).
[6] Daniel Kleppner , The Gem of General Relativi ty, Physics Today, Apr il (1993), 9 –11.David J. Gross, Can We
Scale the Planck Scale? Physics Today June, 9–11 (1989). Stephen W. Hawking, a Br ief History of Time, Bantam
Books, New York (1988), pp. 134 – 137.
[7] Ala n Guth and Paul St einhar dt , "T he I nflati onary Uni ver se" a nd a rti cl e in S . W. Ha wk ing, P hys. L et t. 134B, 403
(1984); E. Baum, ibid. 133B, 1885 (1983) ; .Albert Einstein, Ideas and Opinions, Crown Publ ishers, New York
(1987), PP. 348.
[8] Chaplygin, S. Sci. Mem. Moscow University Mata Phys. 21. 1(1904). P. J. E. Peeblesand B, Ratra, Astrophys. J.
Lett. 325. L17 (1988) : A and R. G. Vishwakar ma, Class, Quant. Grav. 14.945(1997) : F. Hoyle. G. Burbidge
and J. V. Narl ikar, Mon. R. Astr on. Soc. 286. 173(1997).
[9] B. F. Schutz, Phys. Rev. D 2, 2762(1970); M. I . Kalinin, V. N. Melnikov, Grav. Cosmol . 9, 227(2003). Bnnet, C.
L. et al. Astrophys. J. Suppl 148 1(2003) arXiv: astroph/0302207. Spergel, D. B.et al. : Astrophys. J. Suppl.
148 175(2003), arXiv:astroph/0302209.
[10] Lyons, G. W. (1992). Complex solutions for the scalar field model of the universe, Phys. Rev. D46, 1546 – 1550.
Alan H. Guth, The Inflat ionary Universe, Addision–Wesley Co. , Inc., Reading, Massachusetts (1997).
- Citation
- Abstract
- Reference
- Full PDF
Keywords - Adomian Decomposition Method (ADM), Boundary Layer, Convective Heat Transfer, Nonlinear, Pressure Gradient
[1] Hasanpour A. M., Farhadi K, Sedighi H. R. A. Shorynejad, Lattice Boltzmann Simulation for Magnetohydrodynamic Mixed Convective Flow in a Porous Medium. World Applied Science Journal 11, 2010, 1124-1132.
[2] Ganji D.D., and Rajabi A. , Application of perturbation method in nonlinear heat conduction and convection equations, Physics Letters A, 360( 4-5), 2007, 570-573
[3] Ganji D. D. , Babazadeh H., Noori F., Pirouz M. M, Janipour M., An Application of Homotopy Perturbation Method for Non-linear Blasius Equation to Boundary Layer Flow Over a Flat Plate, International Journal of Nonlinear Science, 7(4), 2009 399-404
[4] Esmaeilpour M and Ganji D. D., Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate. Physics Letters, A372, 2007 33-38
[5] Fathizadeh .M and Aroujalian A., Study of Boundary Layer Convective Heat Transfer With Low Pressure Gradient, International Journal Chemical Engineering. 9(1), 2012, 33-39
[6] Adomian, G., A review of the decomposition method in applied mathematics, Journal Mathematics. Analysis Application. 135, 1998, 501-544.
[7] Adomian G, Solving Frontier Problems of Physics: The Decomposition Method (Boston, MA Kluwer, 1994).
[8] Mirgolbabaei H., Barari A. and Ibsen L. B., Analytical Solution of Forced-Convective Boundary-Layer Flow Over a Flat Plate, Archives of Civil and Mechanical Engineering, X(2), 2010, 41-51
[9] Makinde O. D, Olajuwon B.I. , and Gbolagade A.W., Adomian Decomposition Approach to a Boundary Layer Flow with Thermal Radiation Past a Moving Vertical Porous Plate, Int. J. of Appl. Math and Mech. 3(3), 2007, 62-70
[10] Ramiar, A., Ganji, D. D. and Esmaili, Q., Homotopy perturbartion method and variational iteration method for orthogonal 2-D and axisymmetric impinging jet problems, International Journal. Nonlinear Science Numerical. Simulation, 9, 2008, 115-130
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | On the Convergence of Non-Uniform Wavelet Packet Expansions |
Country | : | India |
Authors | : | Sohrab Ali |
: | 10.9790/5728-0414349 |
Keywords: Nonuniform multiresolution analysis, Wavelet packets, Radial decreasing 𝐿1 –functions
[2] B. Behera, Wavelet packets associated with nonuniform multiresolution analyses, J. Math. Anal. Appl., 328 (2007), 1237-1246.
[3] L. Carleson, On the convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-195.
[4] J.-P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal., 158 (1998), 209-241.
[5] J.-P. Gabardo and M. Nashed, An analogue of Cohen's condition for nonuniform multiresolution analyses, in: A. Aldroubi, E. Lin (Eds.), Wavelets, Multiwavelets and Their Applications, in: Cont. Math., 216, Amer. Math. Soc., Providence, RI, (1998), 41-61.
[6] J.-P. Gabardo and X. Yu, Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs, J. Math. Anal. Appl., 323 (2006), 798-817.
[7] E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, New York, 1996.
[8] R. A. Hunt, On the convergence of Fourier series, in: Proceedings of the Conference on Orthogonal Expansions and their Continuous Analogues (D. T. Haimo. Ed.), Southern Illinois University Press, (1968), 235-255.
[9] S. E. Kelly, M. A. Kon and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc., 30 (1994), 87-94.
[10] S. E. Kelly, M. A. Kon and L. A. Raphael, Local convergence for wavelet expansions, J. Funct. Anal., 126 (1994), 102-138.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | On The Existence of Solution of A Tuberculosis Epidemic Model |
Country | : | Nigeria |
Authors | : | S.A.Egbetade,*, M.O.Ibrahim |
: | 10.9790/5728-0415052 |
Keywords: tuberculosis, mathematical model, epidemic, existence and uniqueness of solution
[2] Blower,S.M.,McLean,A.R.,Porco,T.C.,Small,P.M.,Hopewell,P.C.,Sanchitz,M.A.,Moss,A.R.(1995).The intrinsic transmission dynamics of tuberculosis epidemics. Natl.Med.1(8),815-821(1995).
[3] Castillo-Chavez,C., Feng,F.,To treat or not to treat: the case of tuberculosis, J.Math.Biol.356,629-656(1997).
[4] Cohen,T.,Colijn,C.,Finklea,B., Murray,M., Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission, J R Soc Interface 4(14),523-531(2007).
[5] Colditz,G.A.,Berkey,C.S.,Mosteller,F.,Brewer,T.F.,Wilson,M.E.,Burdick,E., Finberg,H.V., The efficacy of bacillus calmette Guerin vaccination of newborns and infants in the prevention of tuberculosis:meta-analysis of the published literature, Pediatrics 96(1 Pt 1),29-35(1995).
[6] Colijn,C.,Cohen,T., Murray,M., Mathematical models of tuberculosis:accompi- shments and future challenges,Proc.Natl.Aca.Sci. USA 103(11),1-28.(2006).
[7] Corbett,E.L.,Maston,B.,Churchyard,G.J., DeCock,K.M.,Tuberculosis in sub-Sahara Africa:opportunities,challenges and change in the era of anti-retroviral treat- ment,.Lancet 367,926-937(2006).
[8] Derrick,N.R., Grossman,S.L,Differential Equation with applications. Addison Wesley Publishing Company,Inc.Phillipines,1976
[9] Dye,C.,.Global epidemiology of tuberculosis, Lancet 367,938-940(2006).
[10] Egbetade,S.A., Ibrahim,M.O.,Stability analysis of equilibrium states of an SEIR tuberculosis model. Journal of NAMP.20,119-124(2012).
- Citation
- Abstract
- Reference
- Full PDF
Key-words: Double diffuse, Internal heat generation, Internal mass generation, MHD,Maple.
[2]. Eckeret ERG and Drake RM (1972). Analysis of heat and mass transfer. McGraw Hill, New York.
[3]. Dursunkaya Z and Worek WM (1992). Diffusion-thermo and thermal diffusion effects in transient and steady natural convection
from a vertical surface. International Journal of Heat and Mass Transfer 35, pp. 2060–2065.
[4]. Kafoussias NG and Williams NG (1995). Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass
transfer boundary layer flow with temperature dependent viscosity. International Journal of Engineering Science 33, pp. 1369–
1384.
[5]. Postelnicu A (2004). Influence of a magnetic field on heat and mass transfer by natural convection from vertical sufaces in porous
media considering Soret and Dufour effects. International Journal of Heat and Mass Transfer 47, pp. 1467–1475.
[6]. Abreu CRA, Alfradique MF, and Silva AT (2006). Boundary layer flows with Dufour and Soret effects: I: Forced and natural
convection. Chemical Engineering Science 61, pp. 4282–4289.
[7]. Lakshmi Narayana PA and Murthy PVSN (2007). Soret and Dufour effects in a doubly stratified Darcy porous medium. Journal of
Porous Media 10, pp. 613–624.
[8]. Eringen AC (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics 16, pp. 1–18.
[9]. Lukaszewicz G (1999). Micropolar fluids - Theory and Applications. Birkhauser, Basel. Markin JH and Mahmood T (1989). Mixed convection boundary layer similarity solution, prescribed heat flux. Zeitschrift fuer angewandte Mathematik und Physik 40, pp. 61– 68.
[10]. Ahmadi G (1976). Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. International
Journal of Engineering Science 14, pp. 639–646.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | MHD VISCO-Elastic Fluid Flow and Heat Transfer over A Stretching Sheet |
Country | : | India |
Authors | : | M. Subhas Abel, Anis Fatima |
: | 10.9790/5728-0416571 | |
Keywords: visco-elasticity, magnetic parameter, internal heat generation/absorption and Eckert number.
[2] Sakiadis.B.C: Boundary layer behaviour on continuous flat surfaces. A.I.Ch. E.J.7 (1961b) 221-225
[3] Crane.L.J: Flow past a stretching plate.ZAMP.21 (1970) 645-647
[4] Gupta.P.S, Gupta.A.S: Heat and mass transfer on a stretching sheet with suction and blowing. Canad. J.chem. Engg.55 (1977) 744-
746.
[5] Rajgopal.K.R, Na.T.Y, Gupta.A.S: Flow of a visco-elastic fluid over a stretching sheet.
[6] Rheol.Acta 23(1984)213-215.
[7] Vajravelu.K, Rollins.D: Heat transfer in electrically conducting fluid over stretching surface, Int.J.Non- linear Mech , 27(1992)265-
277
[8] Sarme.M.S, Rao.B.N: Heat transfer in a visco-elastic fluid over a stretching sheet, J.Math.Anal.Appl.222 (1998) 268-275.
[9] Vajravelu.K, Roper.T: Flow and heat transfer in a second grade fluid over a stretching sheet, Int.J.Non- linear Mech ,
34(1999)1031-1036