Volume-4 ~ Issue-2
- Citation
- Abstract
- Reference
- Full PDF
Keywords -Laminar Flow, MHD Plane Channel
[2] Aldoss, T.K., Ali, Y.D., Al-Nimr, M.A. Numerical Heat Transfer. Part A, Applications Vol. 30 (4), pp. 379–396, 1996.
[3] Ali J. Chamkha, International Journal of Engineering Science, 42 (3.2), pp.217-230, 2004.
[4] Alireza, S., Sahai, V., Int. J. Heat Mass Transfer, Vol. 33, pp. 1711-1720 1990.
[5] Amkadhi M., Azzouzi. A and Hammouch. Z., Communicating in Nonlinear science and Numerical simulation, Vol.13, p.359, 2008.
[6] Angel, M., Pop, I., and Hossain, M. A., Applied Mechanics and Engineering, 4, pp.773-788, 1999.
[7] Anjali Devi, S.P., and Kandasamy, R., Int. Comm. Heat Transfer, Vol.29, p.707, 2000.
[8] Attia, H.A., Kotb, N.A., Acta Mechanica Vol. 117, pp. 215–220, 1996.
[9] Attia. H. A., Mechanics Research Communications Vol. 26, pp. 115–121, 1999.
[10] Bian, W., Vasseur, P., Bilgen, E., Numerical Heat Transfer. Part A, Applications Vol. 29 (6), 538–625, 1996.
- Citation
- Abstract
- Reference
- Full PDF
Keywords: Couple stresses, Magneto hydrodynamics (MHD), poiseuille flow, porous medium
[2]. S. Asghar, S. Parveen, S. Hanif, A. M. Siddiqui and T. Hayat, Hall effects on the unsteady hydro magnetic flows of an Oldroyd-B
fluid, International Journal of Engineering Science, 41, 2003, 609-619.
[3]. T. M. Nabil, EL-Dabe, Salba, and M.G. Mohandis, Effect of couple stresses on pulsatile hydromagnetic Poiseuille flow, Fluid
Dynamics Research, 15(5), 1965, 313-324.
[4]. P. Chaturani and Upadhya, Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow,
Biorheology, 15 (3-4) 1978, 193-201.
[5]. E. F. Elsehawey, A. M. Sobh, and N. A. S. Afifi, Peristaltic motion of a generalized Newtonian fluid under the effect of transverse
magnetic field, Proc. of the Bulgarian Academy of Sciences 53, 2000, 33-38.
[6]. C. Fetecau, and C. Fetecau, on some axial Couette flows of non-. Newtonian fluids, Z. Math. Angew. Phys, 56, 2005, 1098-1106.
[7]. Abd El, Hakeem, Abd El, Naby and A. E. M. El. Misiery, Effects of an endoscope and generalized Newtonian fluid on peristaltic
motion, Appl. Math. Com. 128, 2002, 19-35.
[8]. T. Hayat, N. Ali and S. Asghar, Peristaltic motion of a Burger's fluid in a planar channel, Appl. Math. Comput, 186 (1), 2007, 309-
329.
[9]. T. Hayat and N. Ali, Peristaltically induced motion of a MHD third grade fluid in a deformable tube, Physica A, 370(2), 2006, 225-239.
[10]. T. Hayat, S. Nadeem and S. Asghar, Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system, International
Journal of Engineering Science, 42, 2004, 65-78.
- Citation
- Abstract
- Reference
- Full PDF
Keyword: Soft sets operations, Distributivity, Absorption.
[1] A. Sezgin and A.O. Atagun, On Operations of Soft Set, Computers and Mathematics with Applications, 61 (2011), 1457–1467.
[2] D. Molodtsov, Soft Set Theory – First Results, Computers and Mathematics with Applications, 37 (1999), 19–31.
[3] D. Pei and D. Miao, From Soft Sets to Information Systems, in Granular Computing, 2005 IEEE International Conference, Vol. 2 p.
617–621.
[4] Fu Li, Notes on the Soft Operations, ARPN Journal of Systems and Software, Vol. 1 no. 6 (2011), 205–208.
[5] K. Qin and Z. Hong, On Soft Equality, Journal of Computational and Applied Mathematics, 234 (2010), 1347–1355.
[6] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On Some New Operations on Soft Set Theory, Computers and Mathematics with
Applications, 57 (2009), 1547–1553.
[7] P.K. Maji, R. Biswas, A.R. Roy, Soft Set Theory, Computers and Mathematics with Applications, 45 (2003), 555–562.
- Citation
- Abstract
- Reference
- Full PDF
Keyword: Transdermal Drug Delivery System, Diffusion Equation, Finite Element Method
[1] Agrawal G. , Development ,fabrication and evaluation of TDDS- A review,2009 (vol.7,Issue 5).
[2] Chao K.N., Eisley J.G. & Yang W.J.(1973) Heat and water migration in regional skin and subcutaneous tissues , Bio-MechSypm
ASME,69-72.
[3] Chao K.N., Yang W.J.(1975) Response of skin and tissue temperature in sauna and stem bath , Bio-MechSypm ASME, 69-71.
[4] Cleary GW, Lange RS, Wise DL. Medical application of controlled release, CRC Press, Boca Raton, Florida.1984, Vol I: 203-45
[5] Gurang D.B., Saxena V.P. and Adhikary P.R. (2009) FEM approach to one dimensional unsteady state temperature distribution in
human dermal parts with quadratic shape functions. J App Math and Info, 27,301-313
[6] Guy and Hadgraft , Transdermal Drug Delivery Development, Issue and research initiatives.
[7] J. LEE. J.R. KING., T.G. ROGERS. 1996. A multiple-pathway model for the diffusion of drugs in skin. IMA J. Math. Applied in
Med. & Bio. 13, 127-150.
[8] Kalia , Y.N. & Guy , R.H. (2001) Modeling Transdermal drug release , Adv. Drug Delivery Rev, 48 , 159-172.
[9] Missle , P.J.(2000) Finite element modeling of diffusion & partitioning in biological system : The infinite composite medium
problem , Ann BomedEng, 48,1307-1317.
[10] Myres G.E.(1971) Analytical methods in conduction heat transfer, Mc-Graw Hill Co,New York pp 320-428.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | An Application of Reverse Quasi Steady State Approximation over SERCA |
Country | : | India |
Authors | : | Prashant Dwivedi |
: | 10.9790/5728-0423743 |
Keyword: SERCA, Michelis-Menten, rQSSA, Enzyme Kinetics.
[1] E. R. Higgins, M. B. Cannell and James Sneyd, A Buffering SERCA Pump in Models of Calcium Dynamics, Biophys. J. 91
(2006) 151-163.
[2] K. J. Laidler, Theory of the transient phase in kinetics, with special reference to enzyme systems, Can. J. Chem. 33 (1955) 1614-
1624.
[3] M. M. Stayton and H. J. Fromm, A computer analysis of the validity of the integrated Michaelis-Menten equation, J. Theor. Biol. 78
(1979) 309-323.
[4] L. A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol. 50(6) (1988) 579-593.
[5] L. A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev. 31(3) (1989) 446-477.
[6] J. M. Reiner, Behavior of Enzyme Systems, (New York: Van Nostrand Reinhold Company, 1969) 82-90.
[7] A. R. Schulz, Enzyme Kinetics. From Diastase to Multi-enzyme Systems, (Cambridge: Cambridge University Press, 1994) 3-29.
[8] I. H. Segel, Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, (New York: Wiley,
1975) 18-99.
[9] A. Sols and R. Marco, Concentrations of metabolites and binding sites. Implications in metabolic regulation, in Current Topics in
Cellular Regulation, 2, B. Horecker and E. Stadtman (Eds), New York: Academic Press, (1970) 227-273.
[10] S. Cha, Kinetic behavior at high enzyme concentrations, J. Biol. Chem. 245 (1970) 4814-4818.
- Citation
- Abstract
- Reference
- Full PDF
Keyword: Basic Reproductive Number, Disease Free Equilibrium, Epidemic Free Equilibrium, Stability, Vaccine.
[1] R. Naresh, S. Panduy, A.K. Misra, Analysis of Vaccination model for carrier dependent infectious diseases with environmental
effects. Journal of Non-linear Analysis: Modeling and control, 13 (3), 2008, 331-350.
[2] C.P. Farrington, On Vaccine Efficacy and Reproduction numbers, Journal of Mathematics and Bioscience, 185, 2003 89-109.
[3] A.B. Gumel, S.M. Moghadas, A qualitative Study of a Vaccination Model with Non-Linear Incidence. Journal of Appl. Math.
Comp, 143, 2003, 409-419.
[4] C.M. Kribs-Zaleta, J.X. Velasco-Hernandez, A Simple Vaccination Model With Multiple Epidemic States, Math. Biosc. 164, 2000,
183-201.
[5] B. shulgin, L. Stone, Z. Agur, Pulse Vaccination Strategy in the SIR Epidemic Model. Bull Math. Biol. (1998) 60, pp. 1123-1148.
[6] L-M. Cai, X-Z. Li, Analysis of a SEIV Epidemic Model With Non-Linear Incidence Rate, Applied Mathematical Modelling (2008),
doi: 10.1016/j.apm.2008.01.005
[7] J.K. Matt and R. Pejman, Modelling Infectious Diseases in Human and Animals, New Jersey, Princeton and Oxford, 2008.
[8] J. Jia and ping Li, Global Analysis of Human SVEIR Epidemic Model with Partial Immunity, Mathematica Aeterna, (2011), Vol 1
pp. 547-561
[9] M. De La Sen, S. Alonso-Quesada and A. Ibeas, Observer based Vaccination for a SEIR Epidemic Model with Time Varying Total
Population, International Conference on Circuits, Systems and Simulation (IPCSIT), (2011) Vol. 7, pp.11-22. IACSIT Press
Singapore.
[10] M. De La Sen, S. Alonso-Quesada and A. Ibeas, On the Equilibrium Points and Some Properties of a SVEIRS Epidemic Model.
Proceedings of the World Congress on Engineering (2011) Vol. III, London UK.
- Citation
- Abstract
- Reference
- Full PDF
Keyword: Differential geometry, Gauss curvature, Mathematica program, Mean curvature, Stirling's interpolation.
[1] K. Wolfgang, Differential geometry: curves - surfaces – manifolds ( American Mathematical Society, ISBN 0821839888, 2006).
[2] O. John, Differential geometry and its applications ( Rrentice – Hall, Inc., U.S.A, 1997).
[3] H. Adam, M. Ronald & K. Harab, 2005, Surface curvature estimation for automatic colonic polyp detection, Proceedings of SPIE,
Bellingham, WA, 2005, Vol. 5746.
[4] F. B. Hildebrand, Introduction to Numerical Analysis ( New York: Dover, 1974,Second edition).
[5] I.S. Berezin and N.P. Zhidkov, Computing methods ( Pergamon (Translated from Russian), 1973).
[6] S. S. Sastry, Introductory Methods of Numerical Analysis (4th. Ed prentice Hall of India, NewDelhi, 2005).