Abstract: Currently, the use of titanium alloys components and coating (clad) in petroleum subsea production systems continues to increase. Titanium alloys are lightweight, very flexible; have greater mechanical resistance relationship showing excellent resistance to corrosion and fatigue in ambient seawater and marine environments. The rate of corrosion of titanium alloys are low for hydrochloric acid (3%), however, in the acidification operations from petroleum well is necessary the use of corrosion inhibitors, because the concentration of hydrochloric acid varies from 10 to 28%. A corrosion inhibitor for acidification can be defined as a substance or mixture of substances which are added to the corrosive medium aim inhibit or minimize the action of the corrosive medium. This paper presents the laboratory tests made with titanium coupons subjected to hydrochloric acid solution 10% (weight %), in temperatures of 50° C and 70° C, and additions of phenylamine (aniline), thiocarbamide and β-naphthol as corrosion inhibitors. The results showed that the corrosion protection inhibitors exerted by varies from 50 to 80% depending on the concentration of inhibitors and temperatures used in the tests.
Keywords: Corrosion, Corrosion Inhibitor, Titanium, Acidification, Hydrochloric Acid.
[1] C. Leyens & M. Peters., "Titanium and titanium alloys: fundamentals and applications", New York: Wiley, 2003:
[2] R. W. Schutz, "Defining the corrosion performance window grade 28 titanium", NACE, Corrosion 2003, paper 03435, 2003.
[3] J. K. Fink, "Oil fields chemicals", New York: Gulf Professional Publishing, 2003.
[4] R. W. Schutz, C. F. Baxter, P. L. Boster and F. H. Fores, "Applying titanium alloys in drilling and offshore production system', Journal of the Minerals, Metals and Materials Society, August , 2007, pp 33-35.
[5] A. J. Rosa, R. Carvalho and J. A. D. Xavier, "Engenharia de Reservatório de Petróleo", Rio de Janeiro: Editora Interciencias, 2006.
[6] F. B. Mainier, S. S. M. Tavares, L. H. Fernandes, J. M. Pardal, R. R. Pinheiro, "Corrosão por íons férricos em fluidos ácidos utilizados na produção de petróleo", X Congreso Iberoamericano de Engenharia Mecânica, 4/7 September, Porto, Portugal, 2011, pp.1779-1785.
[7] J. Cruz, R. Martınez and J. Genesca, "Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media, Journal of Electroanalytical, 2004.
[8] F. Bentiss, M. Trisnel and M. Lagrenee, "The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media", Corrosion Science 42, 2000, pp.127-146.
[9] C. F. Clarke, D. Hardie and B. M. Ikeda, "Hydrogen-induced cracking of commercial purity titanium, Corrosion Science, volume 39, 9, September, 1997, pp.1545-1559.
[10] R. Nishimura, J. Shirono and A. Jonokuchi, "Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method". Corrosion Science, Volume 50, Issue 9, September, 2008, pp. 2691-2697.