Version-1 (July–August 2012)
- Citation
- Abstract
- Reference
- Full PDF
Abstract: Flow of water at its maximum density past a vertical plate is considered. Effects of a transversely applied magnetic field, variation of the plate temperature and a first order chemical reaction on the flow field are studied by a similarity transformation of the governing equations. For various values of the magnetic, plate temperature exponent and chemical reaction parameter, numerical values proportionate to Skin friction, Nusselt number and Sherwood number are tabulated and graphical results for the velocity, temperature and concentration profiles are presented. Computed values and graphical results for flow of water at a normal temperature are compared with that of flow at 40C.
Key words: Chemical reaction, density of water, plate temperature, Prandtl number , Schmidt number.
Key words: Chemical reaction, density of water, plate temperature, Prandtl number , Schmidt number.
[1] H. Schlichting and K. Gersten : Boundary Layer Theory (8th ed.), Springer , 1999
[2] V.M. Soundalgekar, H.S.Takhar and N.V.Vighnesam (1988): Combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature: Nuclear Engineering anddesign:110, pp 95-98
[3] Graham Wilks (1973): Combined forced and free convection flow on vertical surfaces: Int. J. of Heat and Mass Transfer: 16, pp1958-1964
[4] M.S.Raju, X.Q.Liu and C.K. Law (1984): A formulation of combined forced and free convection past horizontal and vertical surfaces: Int. J. of Heat and Mass Transfer: 27(12), pp2215-2224
[5] U.N. Das, R.K. Deka and V.M. Soundalgekar (1998): Effect of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction: The Bulletin, GUMA,5, pp13-20
[6] A. Jyothi Bala and Vijaya Kumar Varma (2011): Unsteady MHD heat and mass transfer flow past asemi-infinite vertical porous moving plate with variable suction in the presence of heat generation and homogeneous chemical reaction: Int. J. of Appl. Math. And Mech., 7(7), pp20-24
[7] Mostafa AA Mahmoud (2007): A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate: Mathematical Problems in Engineering, 2007, pp1-7
[8] S. L. Goren (1966): On free convection in water at : Chemical Engineering Science, 21, pp515-518
[9] H. Herwig (1985): An asymptotic approach to free-convection flow at maximum density: Chemical Engineering Science, 40(9), pp1709-1715
[10] V.M. Soundalgekar, T.V. Ramana Murty and N.V. Vighnesam (1984): Combined forced and freeconvective flow of water at past a semi-infinite vertical plate: Int.J. of Heat & Fluid Flow,5(1), pp54-56..................
[2] V.M. Soundalgekar, H.S.Takhar and N.V.Vighnesam (1988): Combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature: Nuclear Engineering anddesign:110, pp 95-98
[3] Graham Wilks (1973): Combined forced and free convection flow on vertical surfaces: Int. J. of Heat and Mass Transfer: 16, pp1958-1964
[4] M.S.Raju, X.Q.Liu and C.K. Law (1984): A formulation of combined forced and free convection past horizontal and vertical surfaces: Int. J. of Heat and Mass Transfer: 27(12), pp2215-2224
[5] U.N. Das, R.K. Deka and V.M. Soundalgekar (1998): Effect of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction: The Bulletin, GUMA,5, pp13-20
[6] A. Jyothi Bala and Vijaya Kumar Varma (2011): Unsteady MHD heat and mass transfer flow past asemi-infinite vertical porous moving plate with variable suction in the presence of heat generation and homogeneous chemical reaction: Int. J. of Appl. Math. And Mech., 7(7), pp20-24
[7] Mostafa AA Mahmoud (2007): A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate: Mathematical Problems in Engineering, 2007, pp1-7
[8] S. L. Goren (1966): On free convection in water at : Chemical Engineering Science, 21, pp515-518
[9] H. Herwig (1985): An asymptotic approach to free-convection flow at maximum density: Chemical Engineering Science, 40(9), pp1709-1715
[10] V.M. Soundalgekar, T.V. Ramana Murty and N.V. Vighnesam (1984): Combined forced and freeconvective flow of water at past a semi-infinite vertical plate: Int.J. of Heat & Fluid Flow,5(1), pp54-56..................
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Charge transfer cross-sections in H+Li(2s)collisions |
Country | : | India |
Authors | : | Y N Tiwari |
: | 10.9790/4861-0120813 |
Abstract : Single charge transfer cross-section in H+-Li (2s) collisions has been studied in the frame work
of the Coulomb-Born Distorted Wave approximation (CBDWA). The differential as well as total cross-sections
have been calculated in the energy range from 10keV to 1MeV.The results so obtained have been compared with
other's available results.
Key words: Coulomb-Born distorted wave approximation. Differential cross-sections, Electron captureTotal cross-sections
Key words: Coulomb-Born distorted wave approximation. Differential cross-sections, Electron captureTotal cross-sections
[1] G.Ferrante , E Fiordilino and M Zarconi,Nuovo Cimento,vol.52 B,No. 2(1979)
[2] G. Ferrante,E.Fiordilino ,Nuovo Cimento,vol.57 B,No. 1(1980)
[3] R .Daniel,G.Ferrante and E.Fiordilino ,Nuovo Cimento ,vol.54B,No.1 (1979)
[4] A.M.Ermolaev, J.Phys.B7, 1069(1984)
[5] W.Fritsch and C.D.Lin, J.Phys.B 16, 1595(1983)
[6] H.Sato and M.Kimura, Phys.Lett. 36A, 286(1983)
[7] Armin Lur and Alejandro Saenz, Phys.Rev.A, 77, 052713(2008)
[8] E.Ghanbari-Adivi , J.Phys.B 44, 165204(2011)
[9] P.Simsic and W.Williamson Jr, J. Chem.Phys.57, 11(1972)
[10] Y.N.Tiwari, Pramana, J.Phys, vol.70, No.4, 753(2008)
[11] M. R. C. McDowell and J. P. Coleman, Introduction to the theory of ion-atom collisions, p278 (1970)North-Holland Publishing
Company, Amsterdam-London
[12] C.E.Moore, Atomic Energy Levels, NHS Circular No.467, Vol. I (1958)Washington D C, U.S .Govt. Printing press)
[13] H.S.W.Massey, 1958, Atomic collision processes, Ed. By M.R.C McDowell, North-Holland (Amsterdam)
[2] G. Ferrante,E.Fiordilino ,Nuovo Cimento,vol.57 B,No. 1(1980)
[3] R .Daniel,G.Ferrante and E.Fiordilino ,Nuovo Cimento ,vol.54B,No.1 (1979)
[4] A.M.Ermolaev, J.Phys.B7, 1069(1984)
[5] W.Fritsch and C.D.Lin, J.Phys.B 16, 1595(1983)
[6] H.Sato and M.Kimura, Phys.Lett. 36A, 286(1983)
[7] Armin Lur and Alejandro Saenz, Phys.Rev.A, 77, 052713(2008)
[8] E.Ghanbari-Adivi , J.Phys.B 44, 165204(2011)
[9] P.Simsic and W.Williamson Jr, J. Chem.Phys.57, 11(1972)
[10] Y.N.Tiwari, Pramana, J.Phys, vol.70, No.4, 753(2008)
[11] M. R. C. McDowell and J. P. Coleman, Introduction to the theory of ion-atom collisions, p278 (1970)North-Holland Publishing
Company, Amsterdam-London
[12] C.E.Moore, Atomic Energy Levels, NHS Circular No.467, Vol. I (1958)Washington D C, U.S .Govt. Printing press)
[13] H.S.W.Massey, 1958, Atomic collision processes, Ed. By M.R.C McDowell, North-Holland (Amsterdam)
- Citation
- Abstract
- Reference
- Full PDF
Abstract: Pure and Doped L- Arginine Maleate (LArM) a nonlinear optical material has been successfully
grown from slow evaporation method. FTIR analysis was used to confirm the presence of various functional
groups in the grown crystals. Kurtz powder SHG measurements confirm the NLO property of the grown crystal.
X- Ray powder diffraction studies have been carried out in order to calculate the lattice parameter values.
grown from slow evaporation method. FTIR analysis was used to confirm the presence of various functional
groups in the grown crystals. Kurtz powder SHG measurements confirm the NLO property of the grown crystal.
X- Ray powder diffraction studies have been carried out in order to calculate the lattice parameter values.
[1]. J. Madhavan, S. Aruna, K. Ambujam, A. Joseph Arul Pragasam, S. M. Ravikumar,M. Gulam Mohamed, and P. Sagayaraj, Cryst.Res. Technol., October 2006,41,No.10 pp 997 – 1001
[2]. J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, Cryst. Res. Technol., January 2007, 42,No.1, pp 59 – 64
[3]. S. Selvakumar , S.M. Ravi Kumar, Ginson P. Joseph, K. Rajarajan , J. Madhavan , S.A. Rajasekar , P. Sagayaraj, Materials Chemistry and Physics, May 2007,103 , pp 153–157
[4]. S. Senthil , S.Pari , P.Sagayaraj , J.Madhavan, Physica B June 2009,404 pp 1655–1660
[5]. D. Sankar , P. Praveen Kumar , J. Madhavan, Physica B , February 2010 , 405,pp 1233–1238
[6]. R.Sankar, R.Muralidharan, C.M.Raghavan, R.Jayavel, Materials Chemistry and Physics 107(2008)51
[7]. A.Josheph Arul Prakasam, J.Madhavan, M.Gulam Mohammed, S.Selvakumar, K.Ambujam and P.Sagayaraj, Opt. Mat. (2006)
[8]. S.B.Monaco, L.E.Devis, S.P.Velsko, F.T.Wang, D.Eimerl and A.Zalkin, J.Cryst.Growth 85, 252-255 (1987)
[9]. A.M.Petrosyan, R.P.Sukiasyan, H.A.Karapetyan, S.s.Terzyan and R.S.feigelson, J.Cryst.Growth 213, 103-111 (2002)
[10]. T.Mallik, T.Kar, Cryst.Res.Technol. 40 No.8, 778-781 (2005)
[2]. J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, Cryst. Res. Technol., January 2007, 42,No.1, pp 59 – 64
[3]. S. Selvakumar , S.M. Ravi Kumar, Ginson P. Joseph, K. Rajarajan , J. Madhavan , S.A. Rajasekar , P. Sagayaraj, Materials Chemistry and Physics, May 2007,103 , pp 153–157
[4]. S. Senthil , S.Pari , P.Sagayaraj , J.Madhavan, Physica B June 2009,404 pp 1655–1660
[5]. D. Sankar , P. Praveen Kumar , J. Madhavan, Physica B , February 2010 , 405,pp 1233–1238
[6]. R.Sankar, R.Muralidharan, C.M.Raghavan, R.Jayavel, Materials Chemistry and Physics 107(2008)51
[7]. A.Josheph Arul Prakasam, J.Madhavan, M.Gulam Mohammed, S.Selvakumar, K.Ambujam and P.Sagayaraj, Opt. Mat. (2006)
[8]. S.B.Monaco, L.E.Devis, S.P.Velsko, F.T.Wang, D.Eimerl and A.Zalkin, J.Cryst.Growth 85, 252-255 (1987)
[9]. A.M.Petrosyan, R.P.Sukiasyan, H.A.Karapetyan, S.s.Terzyan and R.S.feigelson, J.Cryst.Growth 213, 103-111 (2002)
[10]. T.Mallik, T.Kar, Cryst.Res.Technol. 40 No.8, 778-781 (2005)
- Citation
- Abstract
- Reference
- Full PDF
Abstract: Good optical quality single crystals of pure and doped L-Alaninium Maleate (LAM) crystals have been grown. The crystals have been grown by slow evaporation method at a constant temperature of 35˚C from its aqueous solution. The grown single crystals of pure and doped LAM were characterized by employing FTIR, SHG, ICP, Dielectric study and X- ray diffraction methods.
Keywords: Dielectric, Ftir, Icp, Shg, X-Ray Diffraction
Keywords: Dielectric, Ftir, Icp, Shg, X-Ray Diffraction
[1]. Sujatha T, Cyrac Peter A, Vimalan M, MerlineShyla J, Madhavan J., Physica B., 405(2010) 3365.
[2]. Victor Antony Raj M and Madhavan J., Archives of physics Research, 2 (1) (2011)160-168.
[3]. S. Senthil, S. Pari, R. John Xavier, J. Madhavan, Optik, 2011, 123, pp 104
[4]. G. Prabagaran, M. Victor Antony Raj, S. Arulmozhi and J. Madhavan, Der Pharma Chemica, 2011, 3 (6):637
[5]. M. Victor Antony Raj, J.Madhavan, M. Gulam Mohamed, J. Comput. Method. Mol. Design, 2011, 1 (4):57-64
[6]. M.S.Lehman, T.F. Koetzle, W.C. Hamilton, J.Am.Chem.soc.94(1972)2657
[7]. L.Misoguti, A.R.Varela, F.D.Nunes, V.S.Bagnato, F.E.A. Mela, J.Mendes Filho, S.C.Zilio, Opt.Mater 6(1996)147.
[8]. S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
[9]. G.Ramesh Kumar, S.Kokulraj, R.Sankar, R.Mohan, S.Pandi, R.Jayavel
[10]. B.Rakvin, Appl. Radiat. Isot. 47(1996)965
[2]. Victor Antony Raj M and Madhavan J., Archives of physics Research, 2 (1) (2011)160-168.
[3]. S. Senthil, S. Pari, R. John Xavier, J. Madhavan, Optik, 2011, 123, pp 104
[4]. G. Prabagaran, M. Victor Antony Raj, S. Arulmozhi and J. Madhavan, Der Pharma Chemica, 2011, 3 (6):637
[5]. M. Victor Antony Raj, J.Madhavan, M. Gulam Mohamed, J. Comput. Method. Mol. Design, 2011, 1 (4):57-64
[6]. M.S.Lehman, T.F. Koetzle, W.C. Hamilton, J.Am.Chem.soc.94(1972)2657
[7]. L.Misoguti, A.R.Varela, F.D.Nunes, V.S.Bagnato, F.E.A. Mela, J.Mendes Filho, S.C.Zilio, Opt.Mater 6(1996)147.
[8]. S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
[9]. G.Ramesh Kumar, S.Kokulraj, R.Sankar, R.Mohan, S.Pandi, R.Jayavel
[10]. B.Rakvin, Appl. Radiat. Isot. 47(1996)965
- Citation
- Abstract
- Reference
- Full PDF
ABSTRACT : A new model of lattice dynamics has been developed by incorporating the effect of van der
Waals interactions and three-body interactions in the frame work of rigid shell model where short range
interactions are effective upto the second neighbour. This model has been applied to study the complete lattice
dynamics of strontium oxide (SrO). A good agreement has been obtained between theory and experiment.
Keywords: Lattice dynamics, Phonon dispersion curves, Debye temperature, two phonon IR and Raman Spectra, An harmonic elastic constants, combined density of states, strontium oxide.
Keywords: Lattice dynamics, Phonon dispersion curves, Debye temperature, two phonon IR and Raman Spectra, An harmonic elastic constants, combined density of states, strontium oxide.
[1]. Kellermann E.W., Phil. Tons. Roy. Soc. A238, 513 (1940) and Proc. Roy. Soc. A178, 17 (1941).
[2]. Woods A.D.B., Cochran W. and Brock House B.N., Phy. Rev. 119, 980 (1960)
[3]. V. Nussleen and U. Schroder, Phys. Stat. Sol. 21, 309 (1967).
[4]. Basu A.H. and Sengupta S., Phys. Stat. Sol. 29, 367 (1968).
[5]. Sangster M.L.J., Peckhahm G. and Saunderson D.H., J. Phys. C3, 1026 (1970).
[6]. Vijayraghvan P.R., Proc. Internet. Conf. on Phonon. Rejms, France (26-28) July, pp. 139 (1971) and data from Private Communication
[7]. Saunderson D.H. and Pekham G., J. Phys. C4, 2009 (1971)
[8]. Rieder K.H. and Migoni R. and Renker B. , Phys. Rev. B12, 3374 (1975).
[9]. Chang S.S., Tompson C.W., Gurmen E. and Muhfestein L.D., J. Phys. Chem., Solids 36, 769 (1975).
[10]. Manson N.B., Phys. Rev. B4 (1971) 2645-2656.
[11]. Peckham G., Proc. Phys. Soc. Lond. A250 (1967) 70.
[12]. Ghosh A. and Basu A.N., Phys. Rev. B17, 4558 (1978).
[13]. Upadhyaya K.S. and Singh R.K., Phys. Rev., B6, 1589-1596 (1972).
[14]. Upadhyaya K.S. and Singh R.K., J. Phys. Chem. Sol. 35, 1175-1179 (1974).
[15]. Son R.R. and Bartels R.A. , J. Phys. Chem. Sol. 33, 814 (1972).
[2]. Woods A.D.B., Cochran W. and Brock House B.N., Phy. Rev. 119, 980 (1960)
[3]. V. Nussleen and U. Schroder, Phys. Stat. Sol. 21, 309 (1967).
[4]. Basu A.H. and Sengupta S., Phys. Stat. Sol. 29, 367 (1968).
[5]. Sangster M.L.J., Peckhahm G. and Saunderson D.H., J. Phys. C3, 1026 (1970).
[6]. Vijayraghvan P.R., Proc. Internet. Conf. on Phonon. Rejms, France (26-28) July, pp. 139 (1971) and data from Private Communication
[7]. Saunderson D.H. and Pekham G., J. Phys. C4, 2009 (1971)
[8]. Rieder K.H. and Migoni R. and Renker B. , Phys. Rev. B12, 3374 (1975).
[9]. Chang S.S., Tompson C.W., Gurmen E. and Muhfestein L.D., J. Phys. Chem., Solids 36, 769 (1975).
[10]. Manson N.B., Phys. Rev. B4 (1971) 2645-2656.
[11]. Peckham G., Proc. Phys. Soc. Lond. A250 (1967) 70.
[12]. Ghosh A. and Basu A.N., Phys. Rev. B17, 4558 (1978).
[13]. Upadhyaya K.S. and Singh R.K., Phys. Rev., B6, 1589-1596 (1972).
[14]. Upadhyaya K.S. and Singh R.K., J. Phys. Chem. Sol. 35, 1175-1179 (1974).
[15]. Son R.R. and Bartels R.A. , J. Phys. Chem. Sol. 33, 814 (1972).
- Citation
- Abstract
- Reference
- Full PDF
Abstract : A liquid crystal nanocomposite, comprised of 5wt% ferroelectric type BaTiO3 nanoparticles in antiferroelectric phase liquid crystal host MHPOBC, has been prepared to study the effect of nanodope. Experimentally, it has been observed that the spontaneous polarization (Ps) has been reduced and SmC*-SmA* transition temperature (T*) has been shifted towards the lower temperature side in case of BaTiO3 doped MHPOBC. In order to explain the above facts a new phenomenological model has been developed and formulated. Further studies on dielectric measurement and effect of higher doping concentration have satisfied the outcome of the model.
Keywords– barium titanate nanoparticles; nanowall; domain formation; Goldstone mode; system entropy
Keywords– barium titanate nanoparticles; nanowall; domain formation; Goldstone mode; system entropy
[1]. Hao-Hsun Liang, Ya-Zhi Xiao, Fu-Jhen Hsh, Che-Cheng Wu and Jiunm-Yih Lee, 'Enhancing the electro-optical properties of ferroelectric liquid crystals by doping ferroelectric nanoparticles', Taylor & Francis, Liquid Crystals, Vol.37, No.3, 2010.
T.Joshi, A.Kumar, J.Prakash, and A.M.Biradar, ' Low power operation of ferroelectric liquid crystal system displayed with zinc oxide nanoparticles', Applied Physics Letters, 96, 2010.
[2]. A.Mikulko, P.Arora, A.Glushchenko, A.Lapanik and W.Haase, 'Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid- crystalline mixture', IOP Science, EPL, 87, 2009.
[3]. Millicent B.Smith, Katharine Page, Theo Siegrist, Peter L.Redmond, Erich C.Walter, Ram Seshadri, Louis E.Brus, and Michael L.Steigerwald, 'Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3', JACS Articles, 2008.
[4]. S.U.Vallerien, F.Kremer, H.Kapitza, R.Zentel, W.Frank, ' Field Dependent Soft and Goldstone Mode in a Ferroelectric Liquid Crystal as Studied by Dielectric Spectroscopy', Physics Letters A, Vol.138, No.4,5,1989.
[5]. Lev M.Blinov, 'Structure and Properties of Liquid Crystals', Springer New York, 2011.
T.Joshi, A.Kumar, J.Prakash, and A.M.Biradar, ' Low power operation of ferroelectric liquid crystal system displayed with zinc oxide nanoparticles', Applied Physics Letters, 96, 2010.
[2]. A.Mikulko, P.Arora, A.Glushchenko, A.Lapanik and W.Haase, 'Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid- crystalline mixture', IOP Science, EPL, 87, 2009.
[3]. Millicent B.Smith, Katharine Page, Theo Siegrist, Peter L.Redmond, Erich C.Walter, Ram Seshadri, Louis E.Brus, and Michael L.Steigerwald, 'Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3', JACS Articles, 2008.
[4]. S.U.Vallerien, F.Kremer, H.Kapitza, R.Zentel, W.Frank, ' Field Dependent Soft and Goldstone Mode in a Ferroelectric Liquid Crystal as Studied by Dielectric Spectroscopy', Physics Letters A, Vol.138, No.4,5,1989.
[5]. Lev M.Blinov, 'Structure and Properties of Liquid Crystals', Springer New York, 2011.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Electron Capture Cross-Sections InD+ + H(1s) ~ D(1s) + H+ Collisions |
Country | : | India |
Authors | : | Y.T.Tiwari |
: | 10.9790/4861-0123942 |
Abstract: Electron capture differential and integral cross-sections for collisions of deuterons with hydrogen atom in the ground state have been calculated in the high energy range from 20keV to 40MeV using the Coulomb-Born approximation. The differential cross-sections have been calculated in the energy range from 0-4mrad.The isotopic effect of mass on the integral cross-sections have been compared with that of protonhydrogen collisions.
Key Words: Differential cross sections, deuterons, Coulomb Born approximation, Isotopic effect
Key Words: Differential cross sections, deuterons, Coulomb Born approximation, Isotopic effect
[1]. A.Dalgarno and H.N. Yadav, Proc. Phys. Soc. A 66,176(1953)
[2]. M.R.C.McDowell, Proc.Phys.Soc.72, 1087(19580
[3]. A Dalgarno, Proc.Phys.Soc,75,374(1960)
[4]. D.R.Bates and D.A Williams, Proc.Phys.Soc, 83,425(1964)
[5]. L.A Parcell and R.M.May, Proc.Phys.Soc.91, 54(1967)
[6]. F.J.Smith, Planet Space Sci., 14,929(1967)
[7]. J.C.Y.Chen and K.M.Watson, Phys.Rev.188, 236(1969)
[8]. D.R.Bates and R.J.Tweed, J.Phys.B. Ser, 2, 7,117(1974)
[9]. D.R.Bates and R.McCarrol,Proc.Roy.Soc.Lond A 248,175(1958)
[10]. M.R.C.McDowell and J.P.Coleman, introduction to the theory of Ion-Atom Collisions,
[11]. North-Holland, Amsterdam,(1970)
[12]. B.H. Bransden and M.R.C. McDowell, Charge exchange AND the theory of Ion-Atom
[13]. Collisions.,Clarendon press,Oxford(1992)
[14]. B.H.Bransden, Atomic Collision theory,Benjamin Cummings,Reading(1983)
[15]. C.J.Joachain, Quantum Collision theory, North-Holland,Amsterdam(1983)
[2]. M.R.C.McDowell, Proc.Phys.Soc.72, 1087(19580
[3]. A Dalgarno, Proc.Phys.Soc,75,374(1960)
[4]. D.R.Bates and D.A Williams, Proc.Phys.Soc, 83,425(1964)
[5]. L.A Parcell and R.M.May, Proc.Phys.Soc.91, 54(1967)
[6]. F.J.Smith, Planet Space Sci., 14,929(1967)
[7]. J.C.Y.Chen and K.M.Watson, Phys.Rev.188, 236(1969)
[8]. D.R.Bates and R.J.Tweed, J.Phys.B. Ser, 2, 7,117(1974)
[9]. D.R.Bates and R.McCarrol,Proc.Roy.Soc.Lond A 248,175(1958)
[10]. M.R.C.McDowell and J.P.Coleman, introduction to the theory of Ion-Atom Collisions,
[11]. North-Holland, Amsterdam,(1970)
[12]. B.H. Bransden and M.R.C. McDowell, Charge exchange AND the theory of Ion-Atom
[13]. Collisions.,Clarendon press,Oxford(1992)
[14]. B.H.Bransden, Atomic Collision theory,Benjamin Cummings,Reading(1983)
[15]. C.J.Joachain, Quantum Collision theory, North-Holland,Amsterdam(1983)
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Detection of Sum and Difference Squeezing |
Country | : | India |
Authors | : | Ranjana Prakash || Pramila Shukla |
: | 10.9790/4861-0124347 |
Abstract: Sum and difference squeezing was defined by Hillery who showed that these turn into normal
squeezing in sum and difference frequency generation. We re-examine this using an intense coherent pump
mode and with a much better approximation. Our results are valid for much larger interaction times and
therefore enable detection of smaller sum and difference squeezings, in principle., Moreover, if both, our and
Hillary's results are regarded holding, our results lead to more squeezing.
Keywords: Coherent state; squeezing; sum a
Keywords: Coherent state; squeezing; sum a
[1]. D F Walls Nature 306 141 (1983); R Loudon & P L Knight J Mod Opt 34 709 (1987).
[2]. N Chandra and H Prakash Phys Rev A 1 1696 (1970); H Paul Rev. Mod. Phys 54 1061 (1982).
[3]. Ranjana Prakash and Pramila Shukla International Journal of Pure and Applied Physics 22 2463 (2008).
[4]. Ranjana Prakash and Naresh Chandra Phys. Rev. Lett. 42 443 (1979).
[5]. Anirban Pathak and Amit Verma Indian J. Phys. 84 1005 (2010).
[6]. B R Mollow and R J Glauber Phys Rev 160 1076 (1967).
[7]. H P Yuen Phys Rev A 13 2226 (1976).
[8]. D F Walls and P Zoller Phys Rev Lett 47 709 (1981).
[9]. R Loudon Phys Rev Lett 47 815 (1981).
[10]. S L Braunstein and H J Kimble Phys Rev Lett 80 869 (1998).
[11]. L A Wu, H J Kimble, J L Hall & H Wu Phys Rev Lett, 57 2520 (1986).
[12]. M D Reid & D F Walls Phys Rev A 31 1622 (1985).
[13]. P Marian Phys Rev A 44 3325 (1991).
[14]. S. Rani, J. Lal and N. Singh Indian J. Phys. 86 53 (2012).
[15]. L Mandel, Opt Comm 42 437 (1982).
[2]. N Chandra and H Prakash Phys Rev A 1 1696 (1970); H Paul Rev. Mod. Phys 54 1061 (1982).
[3]. Ranjana Prakash and Pramila Shukla International Journal of Pure and Applied Physics 22 2463 (2008).
[4]. Ranjana Prakash and Naresh Chandra Phys. Rev. Lett. 42 443 (1979).
[5]. Anirban Pathak and Amit Verma Indian J. Phys. 84 1005 (2010).
[6]. B R Mollow and R J Glauber Phys Rev 160 1076 (1967).
[7]. H P Yuen Phys Rev A 13 2226 (1976).
[8]. D F Walls and P Zoller Phys Rev Lett 47 709 (1981).
[9]. R Loudon Phys Rev Lett 47 815 (1981).
[10]. S L Braunstein and H J Kimble Phys Rev Lett 80 869 (1998).
[11]. L A Wu, H J Kimble, J L Hall & H Wu Phys Rev Lett, 57 2520 (1986).
[12]. M D Reid & D F Walls Phys Rev A 31 1622 (1985).
[13]. P Marian Phys Rev A 44 3325 (1991).
[14]. S. Rani, J. Lal and N. Singh Indian J. Phys. 86 53 (2012).
[15]. L Mandel, Opt Comm 42 437 (1982).