Abstract: Copper thin films were deposited on glass substrates using thermal vacuum evaporation at 100 oC substrate temperature and then thermally oxidized in air at varying temperatures of 150 oC, 250 oC, 35 0 oC and 450 oC for 2h each. The structural, electrical, and optical properties of the film are determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), four point probe and UV-visible spectroscopy. The XRD pattern show the formation of fine grain Cuprous Oxide (Cu2O) at 250 oC and Cupric Oxide CuO at 350 and 450 oC. Resistivities were calculated to be 4.1x10-6 Ω-cm, 1.92x10-6 Ω-cm, 1076.76 Ω-cm, 127.51 Ω-cm and 205.16 Ω-cm for the as-deposited and Cu Films oxidised at 150, 250, 350 and 450 oC respectively. The Optical band gap value varied between 1.78 eV and 2.2 eV.
Keywords- Cupric oxide, Cuprous oxide, Optical band gap, Thermal oxidation, X-ray diffraction,
[1] A. Parretta, M. K. Jayaraj, A. Di Noceras, S. Loreti, L. Quercia and A. Agati, Electrical and Optical Properties of Copper Oxide Films Prepared by Reactive RF Magnetron Sputtering, physica staus solidi. (a) 155, 1996, 399-404.
[2] P. Samarasekara, M. A. M.Arachchi, S. A. Abeyedeera, C. A. N. Fernando, A. S. Disanayake and R. M. G. Rajapakse, Photocurrent enhancement of d.c. sputtered copper oxide thin films, Bulletin of Materials Science, 28(5), 2005, 483–486.
[3] M. Kooti and L. Matouri, Fabrication of Nanosized Cuprous Oxide Using Fehling's Solution, Transaction F: Nanotechnology 17(1), 2010, 73-78.
[4] P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, Photoluminescence properties of modified chemical bath deposited Copper Oxide thin film, Scholars Research Library Archives of Applied Science Research, 3(2), 2011, 88-291.
[5] P. Keming, M. Hai, Y. Hang, L. Yang, K. Zhenhui, Z. Hong and L. Shuit-Tong, Different copper oxide nanostructures: Synthesis characterization, and application for C-N cross-coupling catalysis. Crystal Research and Technology, 46(11), 2011, 1167-1174.
[6] A. A. Ogwu, T. H. Darma, and E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering, Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 2007, 172-179.
[7] M. Julian, S. Luis, M. Francisco, R. R. B. Jose, and S. Miguel, Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performanceof CuO in lithium cells, Electrochimica Acta, 49, 2004, 4589–4597.
[8] R. P. Wijesundera, Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications, Semiconductor Sceince and Technology, 25(4), 2010, 1-5.
[9] M. Partha, Preparation of copper oxide thin film by SILAR and characterization, Journal of physical sciences, 14, 2010, 235-240. [10] M. R. Johan, M. S. M. Suan, N. L. Hawari and H. A. Ching, Annealing Effect on the properties of copper Oxide Thin Films Prepared by Chemical Deposition, International Journal of Electrochemical Science, 6(1), 2011, 6094-6104.