Volume-1 ~ Issue-2
- Citation
- Abstract
- Reference
- Full PDF
equations which works smoothly in both the cases, i.e., whether the delay is of O( ) or of o( ) . The numerical
method uses the modified upwind finite difference scheme on a special type of mesh to tackle the delay
argument. The stability and error analysis is given for in both the cases, when the sign of the coefficient of the
reaction term is negative or positive. To demonstrate the efficiency of the method and how to discuss the size of
the delay argument affects the layer behaviour we have implemented it on several test examples.
Keywords: Boundary Layer modified upwind finite difference scheme, Singular perturbation delay differential
equation.
[2] R. D. Driver, Ordinary and Delay Differential Equations, Belin-Heidelberg, New York, Springer, 1977.
[3] V. Y. Glizer, Asymptotic solution of a boundary-value problem for linear singularly-perturbed functional differential equations
arising in optical control theory, J. Optim. Theory Appl. 106 (2000) 309-335.
[4] M. K. Kadalbajoo, K. K. Sharma, Numerical analysis of singularly perturbed delay differential equations with layer behavior,
Applied Mathematics and Computation, 157 (2004) 11–28.
[5] M. K. Kadalbajoo, K. K. Sharma, Numerical treatment of boundary value problems for second order singularly perturbed delay
differential equations, Computational & Applied Mathematics, 24 (2005) 151–172.
[6] M. K. Kadalbajoo, K. K. Sharma, A Numerical method based on finite differences for boundary value problems for singularly
perturbed delay differential equations, Applied Mathematics & Computation, 197 (2008) 692–707.
[7] C. G. Lange, R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. v. small
shifts with layer behavior, SIAM J. Appl. Math. 54 (1994) 249–272.
[8] C. G. Lange, & R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. vi.
Small shifts with rapid oscillations, SIAM J. Appl. Math. 54 (1994) 273–283.
[9] M. K. Kadalbazoo, Y. N. Reddy, A non asymptotic method for general linear singular perturbation problems, J. Optim. Theory
Appl. 55 (1986) 439-452.
[10] H. Tian, Numerical treatment of singularly perturbed delay differential equations, Ph.D. thesis, University of Manchester, 2000.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Degree of Approximationof Functionsby Newly Defined Polynomials onan unbounded interval |
Country | : | KSA |
Authors | : | Anwar Habib |
: | 10.9790/5728-0120812 |
[2] Kantorovic, L A (1930). Sur certains developpements suivaint les polynomes de la forme de S Bernstein I , II, C R Acad. Sci. USSR , 20,563-68,595- 600 .
[3] Anwar Habib and S Umar (1980) "On Generalized Bernstein Polynomials" Indian J. pure appl. Math. , 11(2) , 177-189.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Human Computer Calendar for ZERO to INFINITE |
Country | : | India |
Authors | : | Dulal Chandra Samanta || Debabrata Samanta |
: | 10.9790/5728-0121315 |
Keywords: Mid-point of the Operator, leap – year.
[2] iris.usc.edu/information/Iris-Conferences.html.
[3] www.cs.utep.edu/novick/courses/CS5317/Schedule.pdf.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | A NEW CLASS OF MEROMORPHIC FUNCTIONS USING Dm OPERATOR |
Country | : | India |
Authors | : | Dr. Deepaly Nigam |
: | 10.9790/5728-0121627 |
Hot. Line 1(8)(1997), 7–12.
[2]. S.B. JOSHI and H.M. SRIVASTAVA, A certain family of meromorphically multivalent functions, Computers Math. App. 38(3/4)
(1999), 201–211.
[3]. J.L. LIU and H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalent functions. J. Math.
Anal. Appl. 259(2001), 566–581.
[4]. J.L. LIU and S. OWA, On a class of meromorphic p–valent functions involving certain linear operators. Intermat. J. Math. Math. Sci.
32(2002), 271–280.
[5]. J.L. LIU and H.M. SRIVASTAVA, Some convolution conditions for starlikeness and convexity of meromorphically multivalent
functions, Applied Math. Letters, 16(2003), 13–16.
[6]. S. OWA, H.E. DARWISH and M.K. AOUF, Meromorphic multivalent functions with positive and fixed second coefficients, Math.
Japan, 46(1997), 231–236.
[7]. H.M. SRIVASTAVA, H.M. HOSSEN and M.K. AOUF, A unified presentation of some classes of meromorphically multivalent
functions, Computers Math. Appl. 38(11/12)(1999), 63–70.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | ON HYPERBOLICALLY KAEHLERIAN BI-RECURRENT AND BI-SYMMETRIC SPACES |
Country | : | India |
Authors | : | K.S.Rawat || Mukesh Kumar || Nitin Uniyal |
: | 10.9790/5728-0122831 |
Keywords: Bi-recurrent, bi-symmetric, Hyperbolically Kaehlerian Space, Kaehlerian space, Sasakian space.
[2] Tachibana, S.: On the Bochner curvature tensor, Nat. Sci. Report Ochanomizu Univ., 18(1), (1967)15-19.
[3] Singh, S.S.: On Kaehlerian spaces with recurrent Bochner curvature tensor, Acc. Naz. Dei. Lincei, Rend , Series VIII, 51, 3-4, (1971) 213-220.
[4] Singh, S.S.: On Kaehlerian recurrent and Ricci-recurrent spaces of second order, Atti della Acad-emia delle Scienze di Torino, 106, 11, (1971-72) 509-518.
[5] Yano, K.: Differential Geometry of Complex and almost complex spaces, Pergamon press (1965).
[6] Negi, D.S. & Rawat, K.S. : Some bi-recurrence and bi-symmetric properties in a Kaehlerian space, Acta Ciencia Indica, Vol. XX M, No. 1 (1994) 95-100.
[7] Rawat, K.S. & Silswal, G.P. : Some theorems on subspaces of subspaces of a Tachibana spaces,
[8] Acta Ciencia Indica , Vol. XXXI M, No. 4, (2005) 1009-1016.
[9] Rawat,K.S.&Silswal,G.P.:TheoryofLie-derivativesandmotionsinTachibanaspaces,News Bull. Cal. Math. Soc. , 32 (1-3), (2009) 15-20.
[10] Rawat,K.S.&PrasadVirendra:SometheoremsonKaehlerianConharmonicbi-recurrent spaces,Acta Ciencia indica , Vol. XXXV M, No. 2, (2009) 417-421 MR 2666522.
[11] RawatK.S.&PrasadVirendra:OnLie-derivativesofscalars,VectorsandTensors,Purea Applied Mathematica Sciences, Vol. LXX, No. 1-2, (2009) 135-140.
[12] Rawat, K.S. & Dobhal Girish : On Einstein-Kaehlerian s-recurrent space, International Trans. in
[13] Mathematical Sciences and Computer , Vol. 2, No. 2, (2009) 339-343.
[14] Rawat,K.S.&MukeshKumar:OncurvaturecollineationsinaTachibanarecurrentspace, Aligarh Bull. Math. , 28 , No. 1-2 , (2009) 63-69 MR 2769016.
[15] Rawat,K.S.&UniyalNitin:StudyonKaehlerianrecurrentandsymmetricspacesofsecond order, Jour. of the Tensor Society, Vol. 4 , (2010) 69-76.
[16] Rawat , K.S. & Prasad Virendra : On Holomorphically Projectively flat parabolically Kaehlerian
[17] spaces, Rev. Bull. Cal. Math. Society, 18 (1), (2010) 21-26.
[18] Rawat,K.S.&DobhalGirish:ThestudyofTachibanabi-recurrentspaces,AntarcticaJour. Math. ,7(4) , (2010) 413-420.
[19] Rawat, K. S. & Kumar Mukesh : On hyper surfaces of a Conformally flat Kaehlerian recurrent
[20] space , Pure and Applied Mathematika Sciences , Vol. LXXIII , No. 1-2, (2011) 7-13 .
[21] Rawat,K.S.&UniyalNitin:OnConformaltransformationsinanalmostKaehlerian and Kaehlerian spaces, Jour. of Progressive Science , Vol. 2 , No. 2 , (2011) 138-141.
- Citation
- Abstract
- Reference
- Full PDF
Key words: Maximum density of water, porous plate, Chemical reaction, suction, Prandtl number
[2] V.M. Soundalgekar, H.S.Takhar and N.V.Vighnesam (1988): Combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature: Nuclear Engineering anddesign:110, pp 95-98
[3] Graham Wilks (1973): Combined forced and free convection flow on vertical surfaces: Int. J. of Heat and Mass Transfer: 16, pp1958-1964
[4] M.S.Raju, X.Q.Liu and C.K. Law (1984): A formulation of combined forced and free convection past horizontal and vertical surfaces: Int. J. of Heat and Mass Transfer: 27(12), pp2215-2224
[5] U.N. Das, R.K. Deka and V.M. Soundalgekar (1998): Effect of mass transfer on flow past an impulsively started infinite vertical plate with chemical reaction: The Bulletin, GUMA,5, pp13-20
[6] A. Jyothi Bala and Vijaya Kumar Varma (2011): Unsteady MHD heat and mass transfer flow past asemi-infinite vertical porous moving plate with variable suction in the presence of heat generation and homogeneous chemical reaction: Int. J. of Appl. Math. And Mech., 7(7), pp20-24
[7] Mostafa AA Mahmoud (2007): A note on variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a semi-infinite vertical plate: Mathematical Problems in Engineering, 2007, pp1-7
[8] S. L. Goren (1966): On free convection in water at : Chemical Engineering Science, 21, pp515-518
[9] H. Herwig (1985): An asymptotic approach to free-convection flow at maximum density: Chemical Engineering Science, 40(9), pp1709-1715
[10] V.M. Soundalgekar, T.V. Ramana Murty and N.V. Vighnesam (1984): Combined forced and freeconvective flow of water at past a semi-infinite vertical plate: Int.J. of Heat & Fluid Flow, 5(1), pp54-56
- Citation
- Abstract
- Reference
- Full PDF
Keywords - Constraints, Nested partitions, Optimal control problem, Successive quadratic programming
[2] A., Antoniou, W. S., Lu, Practical Optimization: Algorithms and Engineering Applications. Springer, New York, (2007).
[3] E., Polak, An historical survey of computational methods in optimal control, Siam Rev. 15 (1973), no. 2, 553-584.
[4] F., Glover, G. A., Kochenberger, Handbook of metaheuristics, Kluwer academic publishers. Dordrecht, Netherlands, (2003).
[5] C. J., Goh, K. L., Teo, Control parametrization: A unified approach to optimal control problems with general constraints. Automatica 24 (1988), no. 1, 3-18.
[6] C. P., Neuman, A., Sen, A suboptimal control algorithm for constrained problems using cubic splines. Automatica 9 (1973), 601-613.
[7] J., Nocedal, S. J., Wright, Numerical Optimization. 2nd Ed, Springer, New York, USA, (2006).
[8] L. S., Pontryagin, V. G., Boltyanskii, R. V., Gamkrelidze, and E. F., Mischenko, The Mathematical Theory of Optimal Processes (Translation by L. W., Neustadt), Macmillan, New York, USA, (1962).
[9] M. J. D., Powell, Y., Yuan, A recursive quadratic programming algorithm that uses differentiable exact penalty functions, Math. Program. 35 (1986) 265–278.
[10] L., Shi, S., Ólafsson, Nested partitions method for global optimization. Oper. Res. 48 (2000), no. 3, 390- 407. [11] K. L., Teo, C. J. Goh, and K. H., Wong, A unified computational approach to optimal control problems. Longman Scientific and Technical, (1991).
[12] K. L., Teo, V., Rehbock, and L. S., Jennings, A new computational algorithm for functional inequality constrained optimization problems. Automatica 29 (1993), no. 3, 789-792.
[13] J., Vlassenbroeck, A Chebyshev polynomial method for optimal control with state constraints. Automatica 24 (1988), no. 4, 499- 506.
[14] B. Yang, K. Zhang, Z. You, A successive quadratic programming method that uses new corrections for search directions, J. Comput. Appl. Math. 71 (1996) 15-31.
- Citation
- Abstract
- Reference
- Full PDF
Keywords: Sam-Solai's Multivariate symmetric arcsine distribution of kind-1, homoscedastic, Multivariate symmetric log arcsine distribution of kind-1, Multivariate symmetric Inverse arcsine distribution of Kind-1.
[2] I.S. Gradshteyn and I.M. Ryzhik.(Table of integrals, series, and products. Academic Press, NewYork, 1965)
[3] R.M. Norton ,On properties of the arc sine law. Sankhya Ser. A, 37(2), 1975, 306-308
[4] R.M. Norton ,Moment properties and the arc sine law. Sankhya Ser. A, 40(2), 1978,192-198
[5] B.C. Arnold and R.A. Groeneveld, Some properties of the arcsine distribution. J.Amer. Statist.Assoc., 75(369), 1980,173-175.
[6] Tak´acs, L, The arc sine law of Paul L´evy. In Contributions to Probability. A Collection of Papers Dedicated to Eugene Luk´acs (J. Gani and V. K. Rohatgi, eds.) ,1981,49-63. Academic Press, New York
[7] J.H.B. Kemperman and M. Skibinsky, On the characterization of an interesting property of the arcsine distribution. Pacific J. Math., 103(2), 1982,457-465
[8] Michael Woodroofe, On Model Selection and the ARC Sine Laws, The Annals of Statistics. Volume 10, Number 4, 1982, 1182-1194.
[9] Kotz, S. and Johnson, N. L ,Circular normal distribution. Encyclopedia of Statistical Sciences, 1,479. 1982.
[10] S. Cambanis, R. Keener, and G. Simons ,On a α-symmetric multivariate distributions.J. Multivariate Analysis, 13, 1983, 213- 233.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | The Transformative Power of Linear Algebra: Applications in Real World Problem Solving |
Country | : | India |
Authors | : | Dr. Mukesh Punia |
: | 10.9790/5728-01024953 |
Abstract:In colleges, students often study calculus with linear algebra, which is a fundamental abstract mathematical subject. It was first discovered via research on d eterminants. The earliest courses to make use of linear algebra as a textbook were those offered at graduate levels at American colleges. This lecture is a required component of the undergraduate studies of scientific departments at educational institution s located all over the globe. The study of linear systems of equations, which was initially developed by the Babylonians about the year around Cardan devised a straightforward method for solving systems of linear equations by developing a formula that......
Keywords: linear algebra, linear equation, Formulation
Electrical Engineering Students." IEEE Trans. on Educ. v ol. 55, pp. 29 35, 2012.
[2]. R. S. Santos, "Avaliação do desempenho de ensino aprendizagem de Cálculo Diferencial e Integral I (O caso da UFC)," M.S. thesis,
Dept. of Education, Federal University of Ceará, Fortaleza, Brazil, 2012 .
[3]. S. S. Nieto, C. M. C. Lopes . "A importância da disciplina álgebra linear nos cursos de engenharia."World Congress on Computer
Science, Engineering and Technology Education. March 19 22, 2012 , São Paulo, Brazil.
[4]. J. M. Day and D. Kalman. "Teaching Linear Algebra: What are the Quest ions?" Retrieved from http://pcmi.ias.edu/1998/1998
questions2.pdf, 2012 .
[5]. L. Dorier. "Recherches en Histoire et en Didactique des Mathématiques sur L'Algèbre Linéaire Perspectives Théoriques sur leurs
Interactions." In: Les Cahiers du Laboratoire Leibn iz. No. 12. Grenoble. 2012